Book · January 994 citations 110 reads 2,264 authors
Download 5.72 Mb. Pdf ko'rish
|
1994 Book DidacticsOfMathematicsAsAScien
research in the professional life of mathematics teachers (ICME 5) (pp. 2-7). Madison,
WI: Wisconsin Center for Education Research, School of Education, University of Wisconsin. Romberg, T. A. (Ed.). (1985b). Using research in the professional life of mathematics teachers (ICME 5). Madison, WI: Wisconsin Center for Education Research, School of Education, University of Wisconsin. Romberg, T. A. (1988). Can teachers be professionals? In D. A. Grouws, T. J. Cooney, & D. Jones (Eds.), Effective mathematics teaching (pp. 224-244). Reston, VA: NCTM & Lawrence Erlbaum. Rouchier, A., & Steinbring, H. (1988). The practice of teaching and research in didactics, Recherches en Didactique des Mathématiques, 9(2), 189-220. Seeger, F., & Steinbring, H. (Eds.). (1992a). The dialogue between theory and practice in mathematics education: Overcoming the broadcast metaphor. Proceedings of the Fourth Conference on Systematic Cooperation between Theory and Practice in Mathematics Education (SCTP). Brakel, Germany. IDM Materialien und Studien 38. Bielefeld: Universität Bielefeld. Seeger, F., & Steinbring, H. (1992b). The myth of mathematics. In F. Seeger & H. Steinbring (Eds.), (1992a), (pp. 69-89). Steinbring, H. (1989). Routine and meaning in the mathematics classroom. For the Learning of Mathematics, 9(1), 24-33. Steinbring, H. (1991a). The concept of chance in everyday teaching: Aspects of a social epistemology of mathematical knowledge. Educational Studies in Mathematics, 22, 503–522. Steinbring, H. (1991b). Eine andere Epistemologie der Schulmathematik - Kann der Lehrer von seinen Schülern lernen? mathematica didactica, 14(2/3), 69-99. Steinbring, H. (1992). The relation between social and conceptual conventions in everyday mathematics teaching. Unpublished manuscript. Bielefeld: IDM. Steinbring, H. (in press). Epistemology of mathematical knowledge and teacher–learner in- teraction. The Journal of Mathematical Behavior. Verstappen, P. (1991). Ten major issues concerning systematic cooperation between theory and practice in mathematics education. Zentralblatt für Didaktik der Mathematik, 23(4), 122-127. Verstappen, P. F. L. (Ed.). (1988). Report of the Second Conference on Systematic Coop- eration Between Theory and Practice in Mathematics Education. Lochem/Netherlands. Enschede: S.L.O. Voigt, J. (1991). Interaktionsanalysen in der Lehrerbildung. Zentralblatt für Didaktik der Mathematik, 23(5), 161-168. Wheeler, D. (1985). The utility of research. In T. A. Romberg (Ed.), Using research in the professional life of mathematics teachers (ICME 5) (pp. 8-15). Madison, WI: Wisconsin Center for Education Research, School of Education, University of Wisconsin. Wittmann, E. C. (1989). The mathematical training of teachers from the point of view of education. Journal für Mathematik-Didaktik, 10, 291-308. Wittmann, E. C. (1991). From inservice-courses to systematic cooperation between teach- ers and researchers. Zentralblatt für Didaktik der Mathematik, 23(5), 158-160. 102 ON THE APPLICATION OF SCIENCE TO TEACHING AND TEACHER EDUCATION Thomas J. Cooney Athens (Georgia) 2. THE NOTION OF BEING SCIENTIFIC The notion of being scientific has many connotations as it is applied to im- proving the teaching and learning of mathematics. A view of science that emphasizes regimented procedures yielding sweeping generalizations led Highet to conclude that science, so conceived, had little relevance to im- proving the art of teaching. I believe that teaching is an art, not a science. It seems to me very dangerous to apply the aims and methods of science to human beings as individuals, although a statistical principle can often be used to explain their behavior in large groups . . . . A scientific relationship between human beings is bound to be inadequate and perhaps distorted. (Highet, 1950, p. viii) Davis (1967) echoed the same sentiment when he argued that teaching mathematics "is not the application of a science in any presently meaningful sense of such a phrase" (p. 38). But some disagreed. Gage (1972), for example, argued that the objectiv- ity of science could contribute to the improvement of education and could eventually provide a basis for constructing teacher education programs. This argument was echoed many times throughout the 1970s. Gallagher (1970) maintained that it was through science that the artistry of teaching can be revealed to those trying to master the art. Brophy put it quite bluntly. Teacher educators and educational researchers need to pay more attention to the accumulation of a data base that would allow truly prescriptive teacher education to emerge. Propounding ideas on the basis of commitments rather than supportive data is unscientific to say the least, and blowing with the wind by propounding R. Biehler, R. W. Scholz, R. Sträßer, B. Winkelmann (Eds.), Download 5.72 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling