Book · January 994 citations 110 reads 2,264 authors
part of a theory-practice cooperation
Download 5.72 Mb. Pdf ko'rish
|
1994 Book DidacticsOfMathematicsAsAScien
part of a theory-practice cooperation. There is a fundamental epistemological dilemma in every mediation of mathematical knowledge: When teachers intend to provide new knowledge to their students, they have to use some specific (mathematical) signs and diagrams (carriers of the new knowledge), which are connected by some stringent rules, and they have to focus the students' attention on these knowledge carriers. However, the knowledge and its meaning is not con- tained in these carriers. These symbolic signs and diagrams are some kind of concrete substitute for the knowledge itself; they can only point to the knowledge and its meaning intentionally. This cannot be read off directly from these symbolic means, but has to be reconstructed from them actively. Would it not be easier to communicate the mathematical meaning di- rectly? But is this at all possible? This problem is the basis of the epistemo- logical dilemma: Teachers have to use some kind of knowledge carrier, and have to cope with it strictly, and, at the same time, they have to be aware and to let their students know that the students themselves have to search for the meaning of the knowledge, which is not inherent to the symbolic means but is constituted in the relations students are able to construct between the symbols and some intended referential context. An example may illustrate this epistemological dilemma. Consider the following problem from a textbook for 6th-grade students: This problem deals with the division of fractions and tries to use a graphic diagram to mediate in a direct way the meaning of fraction division. This contrast between formula and graphic diagram is suitable to clarify some epistemological aspects between sign and object (or referent) in school mathematics. On the one side, there are mathematical signs connected by some operational symbols, functioning as a little system: On the other side, there is a geometrical reference context, intended to furnish meaning for the signs and operations. The diagram should support the pro- cess of constructing a meaning for the formula. The relational structures in the geometrical diagram and the formula are the important aspects and not the signs itself. In which way can this diagram give meaning to the formula? Is it possible to deduce the idea of the division of fractions from it? Is it adequate to conceive of the elements in this diagram as concrete objects for directly showing the meaning of division? First of all, one observes that all problems to be tackled have denomina- tors that are a multiple of the denominator of the other fraction. Conse- quently, the intended explanation with the help of the diagram cannot be universal. A certain type of fractions seems to be presupposed, indicating a first reciprocal interplay between diagram and formula. There are more in- dications for this interplay: In this representation, a variable comprehension of 1 or the unit is necessary. The big rectangle with the 15 squares once is the unit, used to visualize the proportions of and as four rectangles (with 3 squares each) and as a rectangle of 2 squares respectively. The com- position of three squares to a rectangle represents a new unit or 1. When in- terpreting the operation the epistemological meaning of the re- sult "6" changes according to the changes of the unit. How is the 6 repre- sented in the diagram? It cannot be the sextuple of the original rectangle, hence no pure empirical element. The 6 could mean: In there are 6 times or there are 6 pairs of two squares in Or, interpreting as as implicitly suggested in the dia- gram itself, the operation modifies to: But this is nothing other than the operation: 12 : 2 = 6, because the denominator can be taken as a kind of "variable," that is, the 15 could also be 20, or 27, and so forth. In this division, in principle, the half is calculated, a division by 2 is made. The analysis shows changing interpretations of the unit: First, the unit is represented by the big rectangle of 15 squares, then one single square also represents the unit. The epistemological reason is that a fraction like is not simply and exclusively the relation of trie two concrete numbers 12 and 15, but a single representative of a lot of such relations: What is defined as the unit in the diagram is partly arbitrary and made by some convention, and, furthermore, the constraints of the geometrical di- agram and of the given numerical sign structure determine partly the choice of the unit. For instance, for this arithmetical problem, it would not be an HEINZ STEINBRING 95 adequate choice to take the rectangle of 5 x 7 squares as the unit; whereas a rectangle of 6 x 10 squares, or subdivision of the squares into quarters, would be valid. The intentional variability implicit in the numerical structure of a fraction is partly destroyed in the geometrical diagram used to represent the fraction; this variability has to be restored in the diagram by means of flexibly changing the unit. The concrete single diagram, with its parameters once chosen, has to be conceived of as a "general" diagram. The relational structures in the object (referential system) and in the sym- bol system depend on each other. The relations have to be installed by the subject in accordance with structural necessities; a certain compatibility be- tween the system of symbols and referents can be obtained only through the intended generalization of epistemological relations. This generalization is the objective to be learned and to be constructed by the learner. Epistemological, didactical, and historical research has extended the per- spective on the specific nature of mathematical knowledge (cf., e.g., Balacheff, 1987; Jahnke, 1978; Lakatos, 1976; Otte, 1984b; Steinbring, 1991a; Steinbring, 1993). The mathematical meaning results from relations within a system; knowledge is represented by a specific way of constructing relations. The most elementary relational form of theoretical mathematical knowledge can be characterized as the epistemological triangle: The meaning of theoretical knowledge emerges in the conflict between symbol/model on the one side and object/problem area on the other side (cf. Otte, 1984a; Steinbring, 1989). This epistemological triangle of mathemati- cal knowledge is based on the characterization of "meaning" as the "triad of thoughts, words and things" (Odgen & Richards, 1923, p. 11). With regard to this epistemological triangle of "object," "sign," and "concept," it is not assumed that the relations between the "corners" of the triangle are fixed a priori, but that they must continously be developed, installed, and eventually modified according to new prerequisites (cf. Bromme & Steinbring, 1990). The peculiar aspect of mathematical concepts described by this epistemo- logical triangle is the fact that the reference between object and symbol is not organized simply as a conventionalized name, but must be developed as a conceptual relationship. The ciphers 2 and 15 in the fraction given in this example are not an economic name for an object, like, for instance, the Download 5.72 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling