Book · January 994 citations 110 reads 2,264 authors


Download 5.72 Mb.
Pdf ko'rish
bet86/176
Sana20.10.2023
Hajmi5.72 Mb.
#1712691
1   ...   82   83   84   85   86   87   88   89   ...   176
Bog'liq
1994 Book DidacticsOfMathematicsAsAScien

technology. Berlin: Springer.
Devaney, R. (1990). Chaos, fractals, and dynamics: Computer experiments in mathematics.
Menlo Park, CA: Addison-Wesley.
Dörfler, W. (in press). Computer use and views of the mind. In C. Keitel, & K. Ruthven
(Eds.), Learning from computers: Mathematics education and technology. Berlin:
Springer
Dreyfus, T. (in press). Didactic design of computer based learning environments. In C.
Keitel, & K. Ruthven (Eds.), Learning from computers: Mathematics education and
technology. Berlin: Springer.
Dugdale, S. (1992). The design of computer-based mathematics instruction. In J. Larkin &
R Chabay (Eds.), Computer assisted instruction and intelligent tutoring systems: Shared
issues and complementary approaches (pp. 11-45). Hillsdale, NJ: Erlbaum.
Hillel, J., Lee, L., Laborde, C., & Linchevski, L. (1992). Basic functions through the lens of
computer algebra systems. Journal of Mathematical Behavior, 11(2), 119-158.
Kaput, J. (1989). Supporting concrete visual thinking in multiplicative reasoning. Focus on
Learning Problems in Mathematics, 11(1), 35-47.
Karian, Z. (Ed.). (1992). Symbolic computation in undergraduate mathematics education.
Mathematical Association of America, MAA Notes series (24).
Koedinger, K. (1992). Emergent properties and structural constraints: Advantages of dia-
grammatic representations for reasoning and learning. In H. Narayanan (Ed.),
Proceedings of the AAAI Spring Symposium on Reasoning with Diagrammatic
Representations. Stanford, CA.
Mascarello, M., & Winkelmann B. (1992). Calculus teaching and the computer: On the
interplay of discrete numerical methods and calculus in the education of users of mathe-
matics. In B. Cornu & A. Ralston (Eds.), The influence of computers and informatics on
mathematics and its teaching (pp. 108-116). Science and technology education docu-
ment series 44. Paris: UNESCO.
Nesher, P. (1986). Are mathematical understanding and algorithmic performance related?
For the Learning of Mathematics, 6(3), 2-9.
Pea, R. (1985). Beyond amplification: Using the computer to reorganize mental function-
ing. Educational Psychologist, 20(4), 167-182.
Schwarz, B., & Dreyfus, T. (in press). Measuring integration of information in multirepre-
sentational software. Interactive Learning Environments.
Shama, G., & Dreyfus, T. (in press). Visual, algebraic and mixed strategies in visually pre-
sented linear programming problems. Educational Studies in Mathematics.
Thompson, P. (1985). Experience, problem solving and learning mathematics:
Considerations in developing mathematics curricula. In E. Silver (Ed.), Teaching and
learning mathematical problem solving (pp. 189-236). Hillsdale, NJ: Erlbaum.
Yerushalmi, M., & Chazan, D. (1990). Overcoming visual obstacles with the aid of the
Supposer. Educational Studies in Mathematics, 21(3), 199-219.
Yerushalmi, M. & Schwartz, J. (1989). Visualizing algebra: The function analyzer
[computer program]. Pleasantville, NY: Educational Development Center and Sunburst
Communications.
211
REFERENCES


INTELLIGENT TUTORIAL SYSTEMS
Gerhard Holland
Gießen
1. INTRODUCTION
The following is an attempt to contribute to the topic of intelligent tutorial
systems (ITS) as an object of research in mathematics education and devel-
opment. In the debate in mathematics education about the use of advanced
software for mathematics instruction, tutorial systems have only a low
status beside mathematical tools like DERIVE and mathematical
microworlds like Cabri géométre. There are at least two reasons for this:
1. As far as ITS are available, very few will run on school computers, are
adaptable to the requirements of countries and school systems other than
those for which they were developed, and are offered additionally at prices
within the reach of schools.
2. Because of negative experience with programmed instruction in the
1960s, and subsequently with simple and low-yield drill and practice pro-
grams for simple skills, many mathematicians have a general distrust
toward tutorial systems.
My contribution will have met its goal if it succeeds in initiating a quali-
fied debate about the significance of tutorial systems for mathematics in-
struction and for research into mathematics education. After explaining the
classical architecture of intelligent tutorial systems (section 2), the system
HERON for solving word problems (by K. Reusser) is presented as an ex-
ample (section 3). Subsequently (section 4), the paradigm of ITS as a pri-
vate teacher is contrasted with the concept of a mathematical microworld
with tutorial support. Finally, I give an extensive presentation of a general
concept that can be used to subsume a large number of (potential) tutorial
systems for mathematics instruction and is intended to contribute toward re-
ducing the development cost for ITS (section 5).
2. INTELLIGENT TUTORIAL SYSTEMS
The primary theoretical motive in using methods of artificial intelligence
(AI) to develop "intelligent" tutorial systems, which yield the same perfor-
mance as a private teacher, has been an objective for more than 10 years in
advanced research in the still recent field of artificial intelligence and edu-
cation. This, however, is unaffected by the illusion of revolutionizing the
R. Biehler, R. W. Scholz, R. Sträßer, B. Winkelmann (Eds.),

Download 5.72 Mb.

Do'stlaringiz bilan baham:
1   ...   82   83   84   85   86   87   88   89   ...   176




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling