Цель дисциплины состоит в получении студентами прочных теоретических знаний и твердых практических навыков в области высшей математики


Download 1.62 Mb.
bet5/8
Sana23.04.2023
Hajmi1.62 Mb.
#1388017
TuriРуководство
1   2   3   4   5   6   7   8
Bog'liq
Эк Практикум

Пример 2. Рассмотрим КМНК на примере следующей идентифицируемой модели, содержащей две эндогенные и две экзогенные переменные:

Для построения модели мы располагаем информацией, представленной в таблице 4.
Таблица 4.
Фактические данные для построения модели

n

у1

у2

х1

х2

1

33,0

37,1

3

11

2

45,9

49,3

7

16

3

42,2

41,6

7

9

4

51,4

45,9

10

9

5

49,0

37,4

10

1

6

49,3

52,3

8

16

Сумма

270,8

263,6

45

62

Средн. знач.

45,133

43,930

7,500

10,333

Структурную модель преобразуем в приведенную форму модели.

где u1 и u2 – случайные ошибки.
Для каждого уравнения приведенной формы при расчете коэффициентов  можно применить МНК.
Для упрощения расчетов можно работать с отклонениями от средних уровней и ( и – средние значения). Преобразованные таким образом данные таблицы 4 сведены в таблицу 5. Здесь же показаны промежуточные расчеты, необходимые для определения коэффициентов .
Для нахождения коэффициентов первого приведенного уравнения можно использовать следующую систему нормальных уравнений:

Таблица 5
Преобразованные данные для построения приведенной формы модели

n

Y1

Y2

X1

X2

Y1X1

X12

X1X2

Y1X2

Y2X1

Y2X2

X22

1

‑12,133

‑6,784

‑4,500

0,667

54,599

20,250

‑3,002

‑8,093

30,528

‑4,525

0,445

2

0,767

5,329

‑0,500

5,667

‑0,383

0,250

‑2,834

4,347

‑2,664

30,198

32,115

3

‑2,933

‑2,308

‑0,500

‑1,333

1,467

0,250

0,667

3,910

1,154

3,077

1,777

4

6,267

1,969

2,500

‑1,333

15,668

6,250

‑3,333

‑8,354

4,922

‑2,625

1,777

5

3,867

‑6,541

2,500

‑9,333

9,667

6,250

‑23,333

‑36,091

‑16,353

61,048

87,105

6

4,167

8,337

0,500

5,667

2,084

0,250

2,834

23,614

4,168

47,244

32,115

Сумма

0,002

0,001

0,000

0,002

83,102

33,500

‑29,001

‑20,667

21,755

134,417

155,334

Подставляя рассчитанные в таблице 5 значения сумм, получим

Решение этих уравнений дает значения 11 = 2,822 и 12 = 0,394. Первое уравнение приведенной формы модели примет вид
.
Для нахождения коэффициентов 2k второго приведенного уравнения можно использовать следующую систему нормальных уравнений:

Подставляя рассчитанные в таблице 5 значения сумм, получим

Решение этих уравнений дает значения 21 = 1,668 и 22 = 1,177. Второе уравнение приведенной формы модели примет вид
.
Для перехода от приведенной формы к структурной форме модели найдем из второго уравнения приведенной формы модели
.
Подставим это выражение в первое уравнение приведенной модели, найдем структурное уравнение

.
Таким образом, b12 = 0,335; a11 = 2,264.
Найдем из первого уравнения приведенной формы модели
.
Подставим это выражение во второе уравнение приведенной модели, найдем структурное уравнение

.
Таким образом, b21 = 0,591; a22 = 0,944.
Свободные члены структурной формы находим из уравнений
,
.
Окончательный вид структурной модели

Пример 3. Изучается модель вида:

Требуется:
1. Оценить следующую структурную модель на идентификацию:
2. Исходя из приведенной формы модели уравнений

найти структурные коэффициенты модели.
Решение.
1. Модель имеет три эндогенные (у1, у2, у3) и три экзогенные (х1, х2, х3) переменные.
Проверим каждое уравнение системы на необходимое (Н) и достаточное (Д) условия идентификации.
Первое уравнение.
Н: эндогенных переменных – 2 (у1, у3), отсутствующих экзогенных – 1 (x2).
Выполняется необходимое равенство: 2=1+1, следовательно, уравнение точно идентифицируемо.
Д: в первом уравнении отсутствуют у2 и x2. Построим матрицу из коэффициентов при них в других уравнениях системы:

Уравнение

Отсутствующие
переменные

y2

X2

Второе

–1

a22

Третье

b32

0

DetA = l0  b32a22  0.
Определитель матрицы не равен 0, ранг матрицы равен 2; следовательно, выполняется достаточное условие идентификации, и первое уравнение точно идентифицируемо.
Второе уравнение.
Н: эндогенных переменных – 3 (y1, y2, y3), отсутствующих экзогенных – 2 (x1, x3).
Выполняется необходимое равенство: 3=2+1, следовательно, уравнение точно идентифицируемо.
Д: во втором уравнении отсутствуют x1 и x3. Построим матрицу из коэффициентов при них в других уравнениях системы:

Уравнение

Отсутствующие
переменные

x1

x3

Первое

a11

a13

Третье

a31

a33

DetA = a11a33  a31a13 0.
Определитель матрицы не равен 0, ранг матрицы равен 2, следовательно, выполняется достаточное условие идентификации, и второе уравнение точно идентифицируемо.
Третье уравнение.
Н: эндогенных переменных – 2 (y2, y3), отсутствующих экзогенных – 1 (x2).
Выполняется необходимое равенство: 2=1+1, следовательно, уравнение точно идентифицируемо.
Д: в третьем уравнении отсутствуют y1 и x2. Построим матрицу из коэффициентов при них в других уравнениях системы:

Уравнение

Отсутствующие
переменные

y1

x2

Первое

–1

0

Второе

b21

a22

DetA = la22  b210  0.
Определитель матрицы не равен 0, ранг матрицы равен 2, следовательно, выполняется достаточное условие идентификации, и третье уравнение точно идентифицируемо.
Следовательно, исследуемая система точно идентифицируема и может быть решена косвенным методом наименьших квадратов.
2. Вычислим структурные коэффициенты модели:
1) из третьего уравнения приведенной формы выразим х2 (так как его нет в первом уравнении структурной формы):
.
Данное выражение содержит переменные y3, x1 и x3, которые нужны для первого уравнения структурной формы модели (СФМ). Подставим полученное выражение x2 в первое уравнение приведенной формы модели (ПФМ):

– первое уравнение СФМ:
2) во втором уравнении СФМ нет переменных x1 и x3. Структурные параметры второго уравнения СФМ можно будет определить в два этапа:
Первый этап: выразим x1 в данном случае из первого или третьего уравнения ПФМ. Например, из первого уравнения:
.
Подстановка данного выражения во второе уравнение ПФМ не решило бы задачу до конца, так как в выражении присутствует x3, которого нет в СФМ.
Выразим x3 из третьего уравнения ПФМ:
.
Подставим его в выражение x1:
;
.
Второй этап: аналогично, чтобы выразить x3 через искомые y1, y3, и x2, заменим в выражении x3 значение x1 на полученное из первого уравнения ПФМ:

Следовательно,
.
Подставим полученные x1 и x3 во второе уравнение ПФМ:

– второе уравнение СФМ.
3) из второго уравнения ПФМ выразим x2, так как его нет в третьем уравнении СФМ:
.
Подставим полученное выражение в третье уравнение ПФМ:

– третье уравнение СФМ.
Таким образом, СФМ примет вид


Download 1.62 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling