Chemistry and catalysis advances in organometallic chemistry and catalysis
REFERENCES 1. Herrmann, W. A. J. Organomet. Chem. 1990
Download 11.05 Mb. Pdf ko'rish
|
REFERENCES 1. Herrmann, W. A. J. Organomet. Chem. 1990, 383 , 21. 2. Trout, W. E. J. Chem. Educ. 1938, 15 , 77. 3. Sj¨ostrand, T. Nature 1949, 164 , 580. 4. Tenhunen, R.; Marver, H. S.; Schmid, R. Proc. Natl. Acad. Sci. U.S.A. 1968, 61 , 748. 5. Verma, A.; Hirsch, D. J.; Glatt, C. E.; Ronnett, G. V.; Snyder, S. H. Science 1993, 259 , 381. REFERENCES 559 6. Volbeda, A.; Charon, M.; Piras, C.; Hatchikian, E.; Frey, M.; Fontecillacamps, J. Nature 1995, 373 , 580. 7. Peters, J.; Lanzilotta, W.; Lemon, B.; Seefeldt, L. Science 1998, 282 , 1853. 8. Herrmann, F.; List, H. Patent WO 0,035,105, 1995. 9. Ryter, S. W.; Alam, J.; Choi, A. M. Physiol. Rev. 2006, 86 , 583. 10. Gozzelino, R.; Jeney, V.; Soares, M. P. Annu. Rev. Pharmacol. 2010, 50 , 323. 11. Parfenova, H.; Leffler, C. W. Curr. Pharm. Des. 2008, 14 , 443. 12. Schipper, H. M. Free Radic. Biol. Med. 2004, 37 , 1995. 13. Vesely, M. J.; Exon, D. J.; Clark, J. E.; Foresti, R.; Green, C. J.; Motterlini, R. Am. J. Physiol. 1998, 275 , C1087. 14. Roberts, G.; Youn, H.; Kerby, R. Microbiol. Mol. Biol. Rev. 2004, 68 , 453. 15. Motterlini, R.; Otterbein, L. E. Nat. Rev. Drug Discov. 2010, 9 , 728. 16. Soares, M. P.; Bach, F. H. Trends Mol. Med. 2009, 15 , 50. 17. Otterbein, L.; Bach, F.; Alam, J.; Soares, M.; Lu, H.; Wysk, M.; Davis, R.; Flavell, R.; Choi, A. Nat. Med. 2000, 6 , 422. 18. Fagone, P.; Mangano, K.; Quattrocchi, C.; Motterlini, R.; Di Marco, R.; Magro, G.; Penacho, N.; Rom˜ao, C. C.; Nicoletti, F. Clin. Exp. Immunol. 2011, 163 , 368. 19. Brouard, S.; Otterbein, L. E.; Anrather, J.; Tobiasch, E.; Bach, F. H.; Choi, A. M.; Soares, M. P. J. Exp. Med. 2000, 192 , 1015. 20. Queiroga, C. S. F.; Almeida, A. S.; Martel, C.; Brenner, C.; Alves, P. M.; Vieira, H. L. A. .J. Biol. Chem. 2010, 285 , 17077. 21. Vieira, H. L.; Queiroga, C. S.; Alves, P. M. J. Neurochem. 2008, 107 , 375. 22. Song, R.; Mahidhara, R. S.; Zhou, Z.; Hoffman, R. A.; Seol, D. W.; Flavell, R. A.; Billiar, T. R.; Otterbein, L. E.; Choi, A. M. J.
23. Otterbein, L. E.; Zuckerbraun, B. S.; Haga, M.; Liu, F.; Song, R.; Usheva, A.; Stachulak, C.; Bodyak, N.; Smith, R. N.; Csizmadia, E.; Tyagi, S.; Akamatsu, Y.; Flavell, R. J.; Billiar, T. R.; Tzeng, E.; Bach, F. H.; Choi, A. M. K.; Soares, M. P. Nat. Med. 2003, 9 , 183. 24. Taille, C.; El-Benna, J.; Lanone, S.; Boczkowski, J.; Motterlini, R. J. Biol. Chem. 2005, 280 , 25350. 25. Tavares, A. F. N.; Teixeira, M.; Rom˜ao, C. C.; Seixas, J. D.; Nobre, L. S.; Saraiva, L. M. J. Biol. Chem. 2011, 286 , 26708. 26. Bannenberg, G. L.; Vieira, H. L. Expert Opin. Ther. Pat. 2009, 19 , 663. 27. Boczkowski, J.; Poderoso, J. J.; Motterlini, R. Trends Biochem. Sci. 2006, 31 , 614. 28. Zuckerbraun, B. S.; Chin, B. Y.; Bilban, M.; de Costa d’Avila, J.; Rao, J.; Billiar, T. R.; Otterbein, L. E. FASEB J. 2007, 21 , 1099. 29. Suliman, H. B.; Carraway, M. S.; Tatro, L. G.; Piantadosi, C. A.. J. Cell Sci. 2007, 120 , 299. 30. Queiroga, C. S. F.; Almeida, A. S.; Vieira, H. L. A. Biochem. Res. Int. 2012, 2012 , 749845 31. Chance, B.; Erecinska, M.; Wagner, M. Ann. N. Y. Acad. Sci. 1970, 174 , 193. 32. Brown, S. D.; Piantadosi, C. A. J. Appl. Physiol. 1990, 68 , 604. 33. Brown, S. D.; Piantadosi, C. A. J. Clin. Invest. 1992, 89 , 666. 34. D’Amico, G.; Lam, F.; Hagen, T.; Moncada, S. J. Cell Sci. 2006, 119 , 2291. 35. Queiroga, C. S. F.; Almeida, A. S.; Alves, P. M.; Brenner, C.; Vieira, H. L. A. BMC Cell Biol. 2011, 12 : 10. 36. Almeida, A. S.; Queiroga, C. S.; Sousa, M. F.; Alves, P. M.; Vieira, H. L. J. Biol. Chem. 2012, 287 , 10761. 37. Wang, X.; Wang, Y.; Kim, H. P.; Nakahira, K.; Ryter, S. W.; Choi, A. M. J. Biol. Chem. 2007, 282 , 1718. 38. Basuroy, S.; Tcheranova, D.; Bhattacharya, S.; Leffler, C. W.; Parfenova, H. Am. J. Physiol. Cell Physiol. 2011, 300 , C256. 39. Rodriguez, A. I.; Gangopadhyay, A.; Kelley, E. E.; Pagano, P. J.; Zuckerbraun, B. S.; Bauer, P. M. Arterioscler. Thromb. Vasc. Biol.
40. Tang, X. D.; Xu, R.; Reynolds, M. F.; Garcia, M. L.; Heinemann, S. H.; Hoshi, T. Nature 2003, 425 , 531. 41. Wang, R.; Wu, L. J. Biochem. 1997, 272 , 8222. 42. Riesco-Fagundo, A. M.; Perez-Garcia, M. T.; Gonzalez, C.; Lopez-Lopez, J. R. Circ. Res. 2001, 89 , 430. 43. Jaggar, J. H.; Li, A.; Parfenova, H.; Liu, J.; Umstot, E. S.; Dopico, A. M.; Leffler, C. W. Circ. Res. 2005, 97 , 805. 44. Williams, S. E.; Wootton, P.; Mason, H. S.; Bould, J.; Iles, D. E.; Riccardi, D.; Peers, C.; Kemp, P. J. Science 2004, 306 , 2093. 45. Scragg, J. L.; Dallas, M. L.; Wilkinson, J. A.; Varadi, G.; Peers, C. J. Biol. Chem. 2008, 283 , 24412. 46. Lim, I.; Gibbons, S. J.; Lyford, G. L.; Miller, S. M.; Strege, P. R.; Sarr, M. G.; Chatterjee, S.; Szurszewski, J. H.; Shah, V. H.; Farrugia, G. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 288 , G7. 47. Wilkinson, W. J.; Kemp, P. J. J. Physiol. 2011, 589 , 3055. 48. Brune, B.; Ullrich, V. Mol. Pharmacol. 1987, 32 , 497. 49. Sarady, J. K.; Zuckerbraun, B. S.; Bilban, M.; Wagner, O.; Usheva, A.; Liu, F.; Ifedigbo, E.; Zamora, R.; Choi, A. M. K.; Otterbein, L. E. FASEB J. 2004, 18 , 854. 50. Sun, B.; Zou, X.; Chen, Y.; Zhang, P.; Shi, G. Int. J. Biol. Sci. 2008, 4 , 270. 560 METAL CARBONYLS FOR CO-BASED THERAPIES: CHALLENGES AND SUCCESSES 51. Zuckerbraun, B.; Billiar, T.; Otterbein, S.; Kim, P.; Liu, F.; Choi, A.; Bach, F.; Otterbein, L. J. Exp. Med. 2003, 198 , 1707. 52. Mann, B. E.; Motterlini, R. Chem. Commun. 2007, 4197. 53. Wang, X. M.; Kim, H. P.; Song, R.; Choi, A. M. Am. J. Respir. Cell Mol. Biol. 2006, 34 , 434. 54. Kim, H. P.; Wang, X.; Zhang, J. L.; Suh, G. Y.; Benjamin, I. J.; Ryter, S. W.; Choi, A. M. K. J. Immunol. 2005, 175 , 2622. 55. Kim, H. P.; Wang, X.; Nakao, A.; Kim, S. I.; Murase, N.; Choi, M. E.; Ryter, S. W.; Choi, A. M. K. Proc. Natl. Acad. Sci. U.S.A.
56. Hampson, N. B.; Hauff, N. M. Am. J. Emerg. Med. 2008, 26 , 665. 57. Goldbaum, L.; Ramirez, R.; Absalon, K. Aviat. Space Environ. Med. 1975, 46 , 1289. 58. De Matos, M. N.; Rom˜ao, C. C. U.S. Patent 7, 968, 605, 2011. 59. Buelow, R.; Woo, J. Patent WO 0,078,684, 2002. 60. Pitchumony, T. S.; Spingler, B.; Motterlini, R.; Alberto, R. Org. Biomol. Chem. 2010, 8 , 4849. 61. Alberto, R.; Motterlini, R. Dalton Trans. 2007, 1651. 62. Mann, B. E. In Medicinal Organometallic Chemistry; Jaouen, G.; Metzler-Nolte, N., Eds.; Topics in Organometallic Chemistry, Vol. 32; Springer-Verlag: Berlin, Heidelberg, 2010. 63. Santos, I.; Paulo, A.; Correia, J. Top. Curr. Chem. 2005, 252 , 45. 64. Alberto, R. Eur. J. Inorg. Chem. 2009, 21. 65. Uehara, T.; Uemura, T.; Hirabayashi, S.; Adachi, S.; Odaka, K.; Akizawa, H.; Magata, Y.; Irie, T.; Arano, Y. J. Med. Chem. 2007, 50 , 543. 66. Mann, B. Organometallics 2012, 31 , 5728. 67. Motterlini, R.; Clark, J.; Foresti, R.; Sarathchandra, P.; Mann, B.; Green, C. Circ. Res. 2002, 90 , E17. 68. Clark, J.; Naughton, P.; Shurey, S.; Green, C.; Johnson, T.; Mann, B.; Foresti, R.; Motterlini, R. Circ. Res. 2003, 93 , E2. 69. Motterlini, R.; Mann, B. E.; Johnson, T. R.; Clark, J. E.; Foresti, R.; Green, C. J. Curr. Pharm. Des. 2003, 9 , 2525. 70. Bagul, A.; Hosgood, S. A.; Kaushik, M.; Nicholson, M. L. Transplantation 2008, 85 , 576. 71. Pizarro, M. D.; Rodriguez, J. V.; Mamprin, M. E.; Fuller, B. J.; Mann, B. E.; Motterlini, R.; Guibert, E. E. Cryobiology 2009, 58 , 248.
72. Musameh, M.; Green, C.; Mann, B.; Fuller, B.; Motterlini, R. J. Heart Lung Transplant. 2007, 26 , 1192. 73. Guo, Y.; Stein, A. B.; Wu, W.-J.; Tan, W.; Zhu, X.; Li, Q.-H.; Dawn, B.; Motterlini, R.; Bolli, R. Am. J. Physiol. Heart Circ. Physiol. 2004, 286 , H1649. 74. Ferrandiz, M. L.; Maicas, N.; Garcia-Arnandis, I.; Terencio, M. C.; Motterlini, R.; Devesa, I.; Joosten, L. A. B.; van den Berg, W. B.; Alcaraz, M. J. Ann. Rheum. Dis. 2008, 67 , 1211. 75. Maicas, N.; Ferr´andiz, M. L.; Devesa, I.; Motterlini, R.; Koenders, M. I.; van den Berg, W. B.; Alcaraz, M. J. Eur. J. Pharmacol. 2010, 634 , 184. 76. Atkin, A. J.; Lynam, J. M.; Moulton, B. E.; Sawle, P.; Motterlini, R.; Boyle, N. M.; Pryce, M. T.; Fairlamb, I. J. S. Dalton Trans. 2011, 40 , 5755. 77. McLean, S.; Mann, B. E.; Poole, R. K. Anal. Biochem. 2012, 427 , 36. 78. Santos-Silva, T.; Mukhopadhyay, A.; Seixas, J.; Bernardes, G.; Rom˜ao, C.; Rom˜ao, M. J. Am. Chem. Soc. 2011, 133 , 1192. 79. Santos, M. F. A.; Seixas, J. D.; Coelho, A. C.; Mukhopadhyay, A.; Reis, P. M.; Rom˜ao, M. J.; Rom˜ao, C. C.; Santos-Silva, T. J. Inorg. Biochem. 2012, 117 , 285. 80. Michel, B. W.; Lippert, A. R.; Chang, C. J. J. Am. Chem. Soc. 2012, 134 , 15668. 81. Johnson, T. R.; Mann, B. E.; Teasdale, I. P.; Adams, H.; Foresti, R.; Green, C. J.; Motterlini, R. Dalton Trans. 2007, 1500 82. Pena, A. C.; Penacho, N.; Mancio-Silva, L.; Neres, R.; Seixas, J. D.; Fernandes, A. C.; Rom˜ao, C. C.; Mota, M. M.; Bernardes, G. J. L.; Pamplona, A. Antimicrob. Agents Chemother. 2012, 56 , 1281. 83. Wang, G.; Hamid, T.; Keith, R. J.; Zhou, G.; Partridge, C. R.; Xiang, X.; Kingery, J. R.; Lewis, R. K.; Li, Q.; Rokosh, D. G.; Ford, R.; Spinale, F. G.; Riggs, D. W.; Srivastava, S.; Bhatnagar, A.; Bolli, R.; Prabhu, S. D. Circulation 2010, 121 , 1912. 84. Sawle, P.; Foresti, R.; Mann, B. E.; Johnson, T. R.; Green, C. J.; Motterlini, R. Br. J. Pharmacol. 2005, 145 , 800. 85. Marazioti, A.; Bucci, M.; Coletta, C.; Vellecco, V.; Baskaran, P.; Szab´o, C.; Cirino, G.; Marques, A. R.; Guerreiro, B.; Gonc¸alves, A. M. L.; Seixas, J. D.; Beuve, A.; Rom˜ao, C. C.; Papapetropoulos, A. Arterioscler. Thromb. Vasc. Biol. 2011, 31 , 2570. 86. Vreman, H.; Wong, R.; Kadotani, T.; Stevenson, D. Anal. Biochem. 2005, 341 , 280. 87. Rodrigues, S. S.; Seixas, J. D.; Guerreiro, B.; Pereira, N. M. P.; Rom˜ao, C. C.; Haas, W. E.; Gonc¸alves, I. U.S. patent 0,038,955, 2011. 88. Abel, E. W.; Reid, J. G.; Butler, I. S. J. Chem. Soc. 1963, 2068. 89. Haas, W. E.; Rom˜ao, C. C.; Royo, B.; Fernandes, A. C.; Gonc¸alves, I. U.S. patent 0,233,890, 2006.
REFERENCES 561 90. Nobre, L. S.; Seixas, J. D.; Rom˜ao, C. C.; Saraiva, L. M. Antimicrob. Agents Chemother. 2007, 51 , 4303. 91. Sawle, P.; Hammad, J.; Fairlamb, I.; Moulton, B.; O’Brien, C.; Lynam, J.; Duhme-Klair, A.; Foresti, R.; Motterlini, R. J. Pharm.
92. Fairlamb, I.; Duhme-Klair, A.; Lynam, J.; Moulton, B.; O’Brien, C.; Sawle, P.; Hammad, J.; Motterlini, R. Bioorg. Med. Chem. Lett. 2006, 16 , 995. 93. Scapens, D.; Adams, H.; Johnson, T. R.; Mann, B. E.; Sawle, P.; Aqil, R.; Perrior, T.; Motterlini, R. Dalton Trans. 2007, 4962 94. Hewison, L.; Crook, S. H.; Johnson, T. R.; Mann, B. E.; Adams, H.; Plant, S. E.; Sawle, P.; Motterlini, R. Dalton Trans. 2010, 39 , 8967.
95. Fairlamb, I. J. S.; Lynam, J. M.; Moulton, B. E.; Taylor, I. E.; Duhme-Klair, A. K.; Sawle, P.; Motterlini, R. Dalton Trans. 2007, 3603.
96. Atkin, A. J.; Williams, S.; Sawle, P.; Motterlini, R.; Lynam, J. M.; Fairlamb, I. J. S. Dalton Trans. 2009, 3653. 97. Zhang, W.-Q.; Whitwood, A. C.; Fairlamb, I. J. S.; Lynam, J. M. Inorg. Chem. 2010, 49 , 8941. 98. Zhang, W.-Q.; Atkin, A. J.; Thatcher, R. J.; Whitwood, A. C.; Fairlamb, I. J. S.; Lynam, J. M. Dalton Trans. 2009, 4351. 99. Crook, S. H.; Mann, B. E.; Meijer, A. J. H. M.; Adams, H.; Sawle, P.; Scapens, D.; Motterlini, R. Dalton Trans. 2011, 40 , 4230. 100. Vummaleti, S. V. C.; Branduardi, D.; Masetti, M.; De Vivo, M.; Motterlini, R.; Cavalli, A. Chem. Eur. J. 2012, 18 , 9267. 101. Gonzalez, M. A.; Fry, N. L.; Burt, R.; Davda, R.; Hobbs, A.; Mascharak, P. K. Inorg. Chem. 2011, 50 , 3127. 102. Hewison, L.; Johnson, T. R.; Mann, B. E.; Meijer, A. J. H. M.; Sawle, P.; Motterlini, R. Dalton Trans. 2011, 40 , 8328. 103. Zobi, F.; Degonda, A.; Schaub, M. C.; Bogdanova, A. Y. Inorg. Chem. 2010, 49 , 7313. 104. Zobi, F.; Blacque, O.; Jacobs, R. A.; Schaub, M. C.; Bogdanova, A. Y. Dalton Trans. 2012, 41 , 370. 105. Romanski, S.; Kraus, B.; Schatzschneider, U.; Neud¨orfl, J.-M.; Amslinger, S.; Schmalz, H.-G. Angew. Chem. Int. Ed. 2011, 50 , 2392. 106. Romanski, S.; R¨ucker, H.; Stamellou, E.; Guttentag, M.; Neud¨orfl, J.-M.; Alberto, R.; Amslinger, S.; Yard, B.; Schmalz, H.-G. Organometallics 2012, 31 , 5800. 107. Arregui, B.; L´opez, B.; Garc´ıa Salom, M.; Valero, F.; Navarro, C.; Fenoy, F. J. Kidney Int. 2004, 65 , 564. 108. Niesel, J.; Pinto, A.; Peindy N’Dongo, H. W.; Merz, K.; Ott, I.; Gust, R.; Schatzschneider, U. Chem. Commun. 2008, 1798. 109. Meister, K.; Niesel, J.; Schatzschneider, U.; Metzler-Nolte, N.; Schmidt, D. A.; Havenith, M. Angew. Chem. Int. Ed. 2010, 49 , 3310. 110. Pfeiffer, H.; Rojas, A.; Niesel, J.; Schatzschneider, U. Dalton Trans. 2009, 4292. 111. D¨ordelmann, G.; Pfeiffer, H.; Birkner, A.; Schatzschneider, U. Inorg. Chem. 2011, 50 , 4362. 112. Br¨uckmann, N. E.; Wahl, M.; Reiß, G. J.; Kohns, M.; W¨atjen, W.; Kunz, P. C. Eur. J. Inorg. Chem. 2011, 4571. 113. Jackson, C. S.; Schmitt, S.; Dou, Q. P.; Kodanko, J. J. Inorg. Chem. 2011, 50 , 5336. 114. Gonzalez, M. A.; Yim, M. A.; Cheng, S.; Moyes, A.; Hobbs, A. J.; Mascharak, P. K. Inorg. Chem. 2012, 51 , 601. 115. Kretschmer, R.; Gessner, G.; G¨orls, H.; Heinemann, S. H.; Westerhausen, M. J. Inorg. Biochem. 2011, 105 , 6. 116. Schatzschneider, U. Inorg. Chim. Acta 2011, 374 , 19. 117. Rimmer, R. D.; Pierri, A. E.; Ford, P. C. Coord. Chem. Rev. 2012, 256 , 1509. 118. Rom˜ao, C. C.; Bl¨attler, W. A.; Seixas, J. D.; Bernardes, G. J. L. Chem. Soc. Rev. 2012, 41 , 3571. 119. Scott, L. E.; Orvig, C. Chem. Rev. 2009, 109 , 4885. 120. Thompson, K.; Orvig, C. Dalton Trans. 2006, 761. 121. Liu, Y.; Pak, J.; Schmutz, P.; Bauwens, M.; Mertens, J.; Knight, H.; Alberto, R. J. Am. Chem. Soc. 2006, 128 , 15996. 122. Lee, W.; Squires, R., Jr.; Nyberg, S.; Doo, E.; Hoofnagle, J. Hepatology 2008, 47 , 1401. 123. Marques, A. R.; Kromer, L.; Gallo, D. J.; Penacho, N.; Rodrigues, S. S.; Seixas, J. D.; Bernardes, G. J. L.; Reis, P. M.; Otterbein, S. L.; Ruggieri, R. A.; Gonc¸alves, A. S. G.; Gonc¸alves, A. M. L.; Matos, M. N. D.; Bento, I.; Otterbein, L. E.; Bl¨attler, W. A.; Rom˜ao, C. C. Organometallics 2012, 31 , 5810. 42 THE FERROCIFEN FAMILY AS POTENT AND SELECTIVE ANTITUMOR COMPOUNDS: MECHANISMS OF ACTION G´erard Jaouen * and Siden Top Chimie ParisTech (Ecole Nationale Sup´erieure de Chimie de Paris), Laboratoire Charles Friedel, Paris, France 42.1 INTRODUCTION Chemical Biology, a discipline that links chemical engineering and biology, differs from biochemistry by positioning itself as a broad chemical domain that makes available to biology the tools and techniques of chemistry, and thus allows biological entities to be controlled, manipulated, redirected or even transformed [1–3]. It has proved over the past number of years to be a scientific goldmine for molecular chemistry. We became involved via the biological aspect of the transition metal organometallics, a domain we helped to create under the title of Bioorganometallic Chemistry, and which made its first appearance in 1985 [4–6]. This field of research encompasses organometallics in biology and medicine, and indeed could be seen as an organometallic component of chemical biology. At the beginning of the 1980s, the domain of organometallic catalysis held the high ground and its domination left little space for other fields of exploration. One important discovery, in the vitamin B12 series, the B12 coenzyme, methylcobalamine, was made by Dorothy Hodgkin whose determination of the structure of vitamin B12 by X-ray diffraction in 1956 earned her the Nobel Prize in 1964 [7]. However, this discovery of a proven role for organometallics in biology remained for some time an isolated example among the metalloenzymes of coordination complexes. The first structures of organometallic hydrogenases, for instance, date from 1995 [8, 9]. A few chemists however did take an interest in models of the vitamin B12 family as, in terms of their reactivity, their behavior was sometimes reminiscent of that of Grignard and Meerwein’s reagents, and they could be sources of radicals for 1,2 rearrangements (e.g., of glutamic acid). This provided a conceptual basis that was reasonably familiar thanks to the connection with complexes with σ -type M–C bonds. This line of research however remained marginal. In fact one of the core beliefs prevalent at that time was that organometallics were unstable in the presence of oxygen and unusable in aqueous media. This doctrine made any large-scale application in biology prohibitive. Subsequently, this conviction was shown to be misplaced for myriads of organometallic complexes, thanks to the work of a few pioneers [10]. These early breakthroughs gradually lifted the taboos, liberated earlier restricted thinking, and overturned a number of unfounded assumptions. The viability of organometallics in biology has been the norm now for some years [11] and has allowed a new research community to develop. It is clear now that the flexibility of these species, the breadth of their applications, and their novel functionality provide a powerful stimulus to innovate. Their distinctive properties are finding ever wider applications within this new conceptual framework [10–16]. Organometallic chemical biology may be seen as a subset [17] of Inorganic Chemical Biology [18, 19] recently defined as referring to metal complexes of all kinds, without specifying the type of ligand–metal bonds involved. An organometallic Advances in Organometallic Chemistry and Catalysis: The Silver/Gold Jubilee International Conference on Organometallic Chemistry Celebratory Book, First Edition. Edited by Armando J. L. Pombeiro. © 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
564 THE FERROCIFEN FAMILY AS POTENT AND SELECTIVE ANTITUMOR COMPOUNDS: MECHANISMS OF ACTION complex, for its part, is defined by the presence of at least one direct metal–carbon covalent bond (or a similar bond, e.g., M–H, M–P), and this bond frequently comes into play with metals in low oxidation states. As for bioorganometallic chemistry (or its equivalent, organometallic chemical biology, vide supra), one can say that the discipline is concerned [20] inter alia with research on control of new sources of energy [21–23], for example, the study of hydrogenase models [24] and artificial photosynthesis [22, 23, 25], research into new enzyme inhibitors [26, 27], into vehicles for controlled release of CO and NO [28, 29], in the creation of innovative radiopharmaceuticals such as Alberto’s reagent [30] [31], artificial metalloenzymes [32], new bioprobes (e.g., the carbonyl metalloimmunoassay, CMIA [33–36]), luminescent and fluorescent imaging agents [37–40], or the development of new therapeutic principles [15], to mention just a few of the lines being pursued. One of the difficulties inherent in mechanistic studies of metal complexes for medicinal purposes is the extreme complexity of the possible events that can take place within affected cells [20, 41]. One discovery with significant and novel mechanistic implications in this context is that of the organometallic complexes of Ru with antitumoral potential involving catalytic properties [42]. This example is typical of the unusual approaches possible with these entities and of the contribution they can make to innovative medicinal chemistry. At the present time, exploration, innovation, and indeed discovery and development, of new therapeutic principles are among the chief centers of activity, based on the entirety of effort expended [15]. For example, ferroquine, a novel antimalarial, was in phase II clinical trials at Sanofi-Aventis [43, 44] although it has been halted this year probably for economic reasons. We provide here a rapid overview of the major representatives of the ferrocifen family and its associates, along with their prospective contributions in medicine. Their richness allows us to glimpse a number of mechanistic curiosities that are not yet completely elucidated. But first we will place these entities in the more general context.
Download 11.05 Mb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling