Chjimin Guo matematika va axborot fanlari maktabi, ÿ Muallif: Zhiming Guo
Download 0.65 Mb. Pdf ko'rish
|
1806.(uz)06027v1
U(0, y) = U0(y) = u0(y),
ÿz ÿÿ(y)(h(t) ÿ h0) ÿ = DA2Vyy + (DB - C)Vy + G(U, V ), ÿ 2y ÿx2 (y)| ÿ (h0)). [10] dagi kabi, biz mahalliy mavjudligini isbotlaymiz U + a 2 , |z t > 0, 0 < y < h0, y ÿ [0, h0], t = 0. = 8 ÿ h˜C[0,T ] ÿ 1}, V (0, y) = V0(y) = y0(y), ÿt = B(h(t), y(t)), [1 + z ÿ(y)(h(t) ÿ h0)]3 Lemma isboti 2.1. Asosiy fikr [4] dan moslashtirilgan. z ÿ C3 ([0, ÿ)) shunday bo'lsinki , |y - h0| bo'lsa, 6 z(y) = 1 bo'lsin. ÿ barcha y uchun. h0 ni aniqlang , |h(t) ÿ h0| ÿ va t > 0, 0 < y < h0, = x = y + z(y)(h(t) ÿ h0), 0 ÿ y < +ÿ. Machine Translated by Google C (1+th) , 1+th C C (R) C ÿ2 1+th 1 t C 2 2 (R) [Uˆy(t, h0) + rVˆy(t, h0)]dt. 0 (R) C 2 (R) 16 Y. Liu, Z. Guo, M. El Smaily va L. Vang (1+th), 1+th th ÿ2 ÿ2 1+th 2 2 (1+th), 1+th a 1+th 1+th 0, th th th th T 2 [0,T ] 1+th 2 1+th 2 1+th 0, 1+th T Shunday qilib, biz XT dan o'z ichiga olgan xaritaga egamiz . (1+th) ,1+th (R). ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ = DA2 (h2(t), y(t))V¯yy + (DB(h2(t), y(t)) ÿ C(h2(t), y(t)))V¯y + G, 0 < T ÿ min C 2 [0, T] va khˆÿk Uˆy(t, 0) = Vˆy(t, 0) = 0, kUˆ ÿ U0kC(R) ÿ kUˆk Uˆ(0, y) = U0(y) = u0(y), = A 2Uˆyy + (B ÿ C)Uˆy + F(U, V ), ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ T ÿ C1 va kVˆ k ÿVˆ t > 0 va 0 < y < h0 uchun. Endi biz P ning etarlicha kichik T uchun qisqarish xaritasi ekanligini ko'rsatamiz. (Uˆ i, Vˆ i, XT i = 1, 2 uchun. Biz U¯ = Uˆ1 ÿ Uˆ2 va V¯ = Vˆ1 ÿ Vˆ2 ni o'rnatamiz. Keyin, , t > 0, ÿt C 3 ÿ C3, bu erda C3 bog'liq Uˆ(t, h0) = Vˆ (t, h0) = 0, C 2 the Vˆ (0, y) = V0(y) = y0(y), ÿt ÿ C2, = DA2Vˆyy + (DB ÿ C)Vˆy + G(U, V ), U¯y(t, 0) = V¯y(t, 0) = 0, t > 0, khˆÿ ÿ h˜kC[0,T ] ÿ khˆÿ k ˆ , t > 0, = A 2 ÿ 1, , bu erda C1 va C2 konstantalari h0 , th, kU0kC2[0,h0] va kV0kC2[0,h0] ga bog'liq . (48) hˆ i) ÿ , t > 0 va 0 < y < h0 uchun. 2 ÿ C2T Keyin, hˆÿ (t) = ÿµ(Uˆy(t, h0) + rVˆy(t, h0)) ÿ C µ, r, h0, a, kU0kC2[0,h0] va kV0kC2[0,h0] da . t > 0, 0 < y < h0, U¯(t, h0) = V¯ (t, h0) = 0, t > 0, 2 ÿ C3T keyin bizda bor ˆ hˆ). Biz da'vo qilamiz y ÿ [0, h0], kUˆk (h2(t), y(t))U¯yy + [B(h2(t), y(t)) ÿ C(h2(t), y(t))]U¯y + F, hˆ(t) = h0 - µ Z ˆ Vˆ ) ÿ C har qanday th ÿ (0, 1) uchun yagona chegaralangan yechimni qabul qiladi (U, t > 0, 0 < y < h0, ÿU¯ 2 2 ÿ C1T (R) × C ÿ Endi aniqlaymiz ÿV¯ 2 ÿ 1, Endi biz PH xaritalashni joriy qilishga tayyormiz: (U, V, h) ÿ (U, V, bu PH XT ni o'ziga kichik T uchun moslashtiradi: Haqiqatan ham, agar T ni shunday olsak. ÿt 2 ÿ 1. U¯(0, y) = V¯ (0, y) = 0, 0 ÿ y ÿ h0, , y ÿ [0, h0], Standart Lp nazariyasi va Sobolev singdirish teoremasi bo'yicha, har qanday (U, V, h) ÿ XT uchun boshlang'ich chegaraviy masala ÿUˆ ÿ kVˆ ÿ V0kC(R) ÿ kVˆ k Bundan tashqari, ÿt (49) Machine Translated by Google (R) C 2 h0 C 2 ([0,T ]) ' C 2 1 C(R) ' 1 ' 2 C 2 ' 2 C 2 ' (R) 2 C([0,T ]) (R) 2 C 2 2 C([0,T ]) ÿ C7T Erkin chegaraga ega Lesli-Gower modeli 17 1 ÿ2 1+th ÿ2 th th 1+th ,1+th 1+th ,1+th 1+th ÿ2 th 1+th ,1+th 1+th 1+th ,1+th 1+th ,1+th ÿ2 1+th 1+th ,1+th th +T Shunga qaramay, standart Lp taxminlari va Sobolev o'rnatish teoremasidan foydalanib, biz bor C 1 (D) ÿ C5(U1 - U2C(R) + V1 - V2C(R) + h1 - h2C1[0,T ] ), 2 C[0,T ] ÿ T u¯ 2 UC(R) + V F : = [A2 (h1(t), y(t)) ÿ A2 (h2(t), y(t))]Uˆ1yy + [(B(h1(t), y(t)) ÿ B(h2 (t), , taqqoslash tamoyili orqali barcha t ÿ [0, T] va x ÿ [0, h(t)] uchun y(t, x) ÿ max{M1 + a, y0ÿ} degan xulosaga kelish. U¯C(R) + V¯ ÿ2(t, x) = M2[2M(h(t) ÿ x) ÿ M2 (h(t) ÿ x) (t) = ¯u(1 - u¯) t > 0 uchun, . va (t) > 0 barcha t ÿ (0, T] uchun. ] t ÿ [0, T] & x ÿ [h(t) ÿ Mÿ1 , h(t)] uchun, 2 U¯ y¯ 1 y(t))) ÿ (C(h1(t), y(t)) ÿ C(h2(t), y(t))]Uˆ1y + F(U1, V1) ÿ F(U2, V2). Endi h ni u va y ni quyidagi ikkita yordamchi funktsiyaga ÿ1(t, x) = M1[2M(h(t) ÿ x) ÿ M2 (h(t) ÿ x) bilan solishtirishini isbotlashga o‘tamiz. , , C(R) + h¯ÿ C(R) + h¯ÿ u¯(0) = u0ÿ. C 3 ÿ¯h ÿ h¯' 1 M1 + a , C 2 T = min 1, 8(1 + ˜h) 2 ” y¯ bu erda C4, C5 va C6 > 0 konstantalari A, B, C va Ci ga bog'liq, i = 1, 2, 3 uchun. G : = [DA2 (h1(t), y(t)) ÿ DA2 (h2(t), y(t))]Vˆ1yy + [(DB(h1(t), y(t)) ÿ DB(h2 (t), Endi biz ga murojaat qilamiz Bu erda C7 := max{C4, C5, C6}. Biz tanlaymiz U¯C(R) + V¯ ] t ÿ [0, T] & x ÿ [h(t) - Mÿ1 , h(t)] uchun. (50) ÿ h¯' 2 V¯ ÿ h¯ÿ 2 y¯(0) = y0ÿ, , 2 h¯ +h 1 U¯ (t) = kyu(1 ÿ ) t > 0 uchun, va qisqarish xaritalash teoremasini qo'llang, PH XTda yagona sobit nuqtaga ega degan xulosaga keling . Bu Lemma 2.1 ning isbotini to'ldiradi. Bizda ham bor y(t))) ÿ (C(h1(t), y(t)) ÿ C(h2(t), y(t)))]Vˆ1y + G(U1, V1) ÿ G(U2, V2) . (t) t ÿ (0, T] uchun ÿ L. Bunga erishish uchun biz Lemma isboti 2.2. Kuchli maksimal printsip barcha t ÿ [0, T] va x ÿ [0, h(t)) uchun u > 0 va y > 0 bo'lishini beradi. u(t, h(t)) = y(t, h(t)) = 0 boÿlganligi sababli, Hopf Lemma ux(t, h(t)) < 0 va yx(t, h(t)) < ni hosil qiladi. 0 hamma uchun t ÿ (0, T]. Shunday qilib, h Endi biz quyidagi boshlang'ich qiymat masalasini ko'rib chiqamiz. ÿ h¯' V¯ Taqqoslash tamoyili barcha t ÿ [0, T] va barcha x ÿ [0, h(t)] uchun u(t, x) ÿ u¯(t, x) ÿ max{1, u0ÿ} ekanligini bildiradi. Xuddi shunday, biz quyidagi muammoni ko'rib chiqamiz C 7 ([0, T]) ÿ C6(U1 - U2C(R) + V1 - V2C(R) + h1 - h2C1[0,T ] ), qayerda (51) , ÿ h Yuqoridagilarga asoslanib, agar T ÿ (0, 1] bo'lsa, u holda ÿ C4(U1 - U2C(R) + V1 - V2C(R) + h1 - h2C1[0,T ] ), + T va Machine Translated by Google x ÿ x h0 h0 tÿ+ÿ M1 ' y M2 M1 ÿ u+a ' M2 ' 18 Y. Liu, Z. Guo, M. El Smaily va L. Vang 7. Natijalarni muhokama qilish va xulosa qilish h0 h0 , buni olish uchun Shunday qilib, bizda h hozir tugallandi. 2 ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ Download 0.65 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling