Convergence of the empirical two-sample -statistics with -mixing data


Download 380.03 Kb.
bet10/37
Sana16.11.2020
Hajmi380.03 Kb.
#146511
1   ...   6   7   8   9   10   11   12   13   ...   37

The convergence of the finite dimensional distributions to those of (W (−R + 2Rs, t) , s, t ∈ [0, 1]) is guaranted by Proposition 2.1. The covariance function of this process is Lipschitz continuous hence this process has continuous paths.



We will now express ξn as the difference of two coordinatewise non-decreasing process. To
ease the notations, we will write as (u) := P{g (u, X1) 6 −R + 2Rs}, bs (u) := P{g (X1, v) 6 −R + 2Rs} and ms := P{g (X1, X2) 6 −R + 2Rs}. These three functions are non-negative and non-decreasing. The following equalities take place:


ξ

n (

s, t

n [nt]

[nt]

a

X

i) −

m

s) +




[nt]




n




b

s (

X

j)



m

s)




























n3/2


































) =




n3/2




i=1

(




s (






















nt

(


























































[nt]







X































j=[X]+1




















































=

n [nt]

a

X

i) +




[nt]

n

b




X



m







n [nt]

[

nt

] −

m




[nt]

(

n

− [

nt

])

,

(2.31)




n3/2



















s n3/2




n3/2

i=1

s (







nt




s

( j)




s n3/2





































X

























j=[X]+1












































































Download 380.03 Kb.

Do'stlaringiz bilan baham:
1   ...   6   7   8   9   10   11   12   13   ...   37




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling