Convergence of the empirical two-sample -statistics with -mixing data


Download 380.03 Kb.
bet2/37
Sana16.11.2020
Hajmi380.03 Kb.
#146511
1   2   3   4   5   6   7   8   9   ...   37

Theorem 1.3. Let (Xi)iZ be a strictly stationary sequence. Let e0n be the two-sample U-statistics empirical process with kernel g : R × R R defined for n > 1, 0 6 t 6 1 and s R

by







e0

(s, t) :=

1




n

n3/2




[nt] n
X X
i=1 j=[nt]+1

  • X

1 {g (Xi, Xj) 6 s} − n 1 {g (Xi0, Xj0) 6 s} .


  • 16i006n

(1.15)


Suppose that the assumptions (A.1), (A.2), (A.3) and (A.4) hold. Then for all R,




en0 (s, t) W (s, t) in distribution in D ([−R, R] × [0, 1]) ,

(1.16)

where (W (s, t) , s R, t [0, 1]) is a centered Gaussian process, with covariance given for 0 6 t 6 t0 6 1 and s, s0 R by the following formula:

Cov (W (s, t) , W (s0, t0)) = t (1 − t) (1 − t0) C1,1 (s, s0) + (t0t) t (1 − t0) C2,1 (s, s0)




    • (1 − t0) tt0C2,2 (s, s0) − 2tt0 1 − t2 (1 − t0) C1a (s, s0)




  • 2t (1 − t) t0 (1 − t0) (s0, s) C1a (s0, s) − 2tt0 (1 − t0) 2 + t0 − 2tt2 C2a (s, s0)

− 2t (1 − t) t0 (1 − t0) C2a (s0, s) + 4t (1 − t) t0 (1 − t0) t2 + t +

3







Ca (s, s0) ,

(1.17)




10










where






















h1,s (u) = P{g (u, X1) 6 s} − P{g (X1, X2) 6 s} ,













(1.18)

h2,s (v) = P{g (X1, v) 6 s} − P{g (X1, X2) 6 s} ,













(1.19)

for i, j = 1; 2,

as = h1,s h2,s,













(1.20)

X













(1.21)

Ci,j (s, s0) =

Cov (hi,s (X0) , hj,s0 (Xk)) ,













k∈Z
















Cia (s, s0) =

X
















Cov (hi,s (X0) , as0 (Xk))













(1.22)




k∈Z
















Ca (s, s0) =

X













(1.23)

Cov (as (X0) , as0 (Xk)) .













k∈Z
Remark 1.4. When g is symmetric, h1,s = h2,s and as = 0 hence the covariance admits the simpler form


Cov (W (s, t) , W (s0, t0)) = t (1 − t0) (1 − 2t + 2t0) C1,1 (s, s0) , t 6 t0, s ∈ R,

(1.24)

in particular, we get the same limiting process as in the centering of the indicator by their expectation (see Remark 1.2).





  • HEROLD DEHLING, DAVIDE GIRAUDO AND OLIMJON SHARIPOV

Let us give examples where the assumptions (A.1) and (A.2) are satisfied. let g1 and g2 be function defined from R to itself. Assume that g1 (X1) has a density f1 and g2 (X1) has a density f2, where f1 and f2 are bounded.


(1) Let g : (u, v) 7→g1 (u) + g2 (v). Then g (u, X1) has density f1,u where f1,u (x) =
f2 (x g1 (u)) hence supx,uR f1,u (x) = supxR f2 (x) < +∞ and similarly, supx,uR f2,u (x) = supxR f1 (x) < +∞.


(2) Let g : (u, v) 7→g|1 (u) − g2 (v)|. Then










f1,u (x) = f2 (g1 (u) + x) + f2 (g1 (u) x)

(1.25)

hence













sup f1,u (x) 6 sup f2 (g1 (u) + x) +

sup f2 (g1 (u) − x) 6 2 sup f2 (x) < +∞

(1.26)

x,u∈R

x,u∈R

x,u∈R

x∈R




and by a similar reasoning, we also derive










sup f2,u (x) 6 2 sup f1 (x) < +∞.




(1.27)




x,u∈R

x∈R






1.2. Application. The following is a consequence of Theorems 1.1 and 1.3.


Corollary 1.5. Let µ be a finite measure on the Borel subsets of R. Then under the conditions of Theorems 1.1 and 1.3 the following convergences in distribution take place

06t61 ZR

e

n (

)

2

(




) 06t61

ZR

(




)

2

(

)




(1.28)

sup
















s, t







s




sup




W




s, t







s










06t61 Z

R




n

(




)

2

(

) →

06t61

ZR

(

s, t

)

2

( )

.

(1.29)

sup




e0







s, t




s







sup




W 0







s







  1. Proof

The proof of Theorems 1.1 and 1.3 will be done according to the following steps.




  1. Let hs : R2 → R be the kernel defined by hs (u, v) = 1{g (u, v) 6 s}. The Hoeffding’s decomposition of this kernel gives a spliting of the empirical two-sample U-statistics into a linear part and a degenerated part.




  1. We prove the convergence of the finite dimensional distributions of the linear part to the corresponding ones of the process W .




  1. Then we prove that the process associated to the linear part converges to W in D ([−R, R] × [0, 1]) for all R > 0.




  1. Finally, we show the negligibility of the contribution of the degenerated part.

We do it first in the context of Theorem 1.1. The proof of Theorem 1.3 is closely related.


Consequently, we will only mention the required modifications.

2.1. Proof of Theorem 1.1.


5
2.1.1. Hoeding’s decomposition. Let hs : R2 → R be defined by hs (u, v) = 1 {g (u, v) 6 s}. Let us do the Hoeffding’s decomposition of hs for each fixed s. Let θs := P{g (X1, X2) 6 s},




h1,s (u) = P{g (u, X1) 6 s} − θs, h2,s (v) = P{g (X1, v) 6 s} − θs,

(2.1)

and

Then
1



en (s, t) = n3/2

h3,s (u, v) = hs (u, v) h1,s (u) h2,s (v) θs.
[nt] n

X X


(hs (Xi, Xj) − θs)

i=1 j=[nt]+1
(2.2)

=
1



[nt]n

1

[nt]n

X X h3,s (Xi, Xj) +

X X h1,s (Xi) +



1

[nt]n

X X h2,s (Xj)




n3/2


i=1 j=[nt]+1

n3/2

i=1 j=[nt]+1

n3/2

i=1 j=[nt]+1

=
[nt]

1 X


n

n [nt]

[nt]

[nt]

n

X h3,s (Xi, Xj) +

X h1,s (Xi) +

X h2,s (Xj)




n3/2

i=1
or in other words,

where



j=[nt]+1

n3/2

n3/2

i=1

j=[nt]+1




en (s, t) = Rn (s, t) + Wn (s, t) ,

(2.3)




Rn (s, t) =




1




[nt]

n

h3,s (Xi, Xj) ,

(2.4)

n

3/2

i=1














































nt































X

j=[X]+1







Wn (s, t) =

n [nt]

[nt]

h1,s

(Xi) +

[nt] n

h2,s (Xj) .

(2.5)




n3/2







n3/2

i=1





































nt
















X













j=[X]+1






Moreover, observe that by the assumpions (A.1) and (A.2), there exists a constant M such that for all i ∈ {1; 2; 3},



sup sup

|hi,s0 (x) − hi,s (x)|

6 M.

(2.6)

s0 s

x∈R s0






2.1.2. Convergence of the finite dimensional distributions of the linear part.


Download 380.03 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   37




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling