Convergence of the empirical two-sample -statistics with -mixing data


Download 380.03 Kb.
bet3/37
Sana16.11.2020
Hajmi380.03 Kb.
#146511
1   2   3   4   5   6   7   8   9   ...   37

Proposition 2.1. For all d > 1 and all s1 < · · · < sd and 0 6 t1 < · · · < td 6 1, the vector (Wn (s`, tk))dk,`=1 converges in distribution to (W (s`, tk))dk,`=1, where Wn is defined by (2.5) and W is like in Theorem 1.1.
Proof. We will use the Cramer-Wold device. Let (ak,`)dk,`=1 be a family of real numbers. We have to prove that


d

d




X

X

(2.7)

ak,`Wn (s`, tk)

ak,`W (s`, tk) in distribution.

k,`=1

k,`=1




Pd

To this aim, we will express k,`=1 ak,`Wn (s`, tk) as a sum of linear combinations of indepen-dent random variables, and then apply a central limit theorem. Let




In,u = {i N | [ntu−1] + 1 6 i 6 [ntu]} , 2 6 u 6 d,

(2.8)


n3/2

[ntk



  • HEROLD DEHLING, DAVIDE GIRAUDO AND OLIMJON SHARIPOV




In,1 = {i N | 1 6 i 6 [nt1]} and In,d+1

= {i ∈ N | [ntd] + 1 6 i 6 n}.

Then the following




equality holds:






































































d

ak,`Wn (s`, tk)






































































k,`=1






































































X













d+1































[ntk] d+1































d

a




n [ntk]

1 {

u




k




h







X




1 {

u




k




h




X




,

=







6

}

1,s`

(

i) +




n3/2




>

+ 1}

2,s` (

i)




k,`

n3/2






















i In,u







k,`=1













u=1













i In,u



















u=1




























X










X













X






















X
















X












or in other words,


d

X


ak,`Wn (s`, tk)


































k,`=1





































d+1

d




k,`

n3/2

1 {




6




}




1,s` (

i) +

= u=1 i In,u k,`=1

a

u

k

h

X

X X




n [ntk]













X


































(2.9)
]
Download 380.03 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   37




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling