|
|
|
|
|
|
|
|
sup sup
|
|
max
|
|
R
|
|
|
|
s,
|
k
|
|
|
|
<
|
+
|
|
|
,
|
|
|
|
(2.121)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
|
|
|
|
|
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
∞
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n>1 s∈R E
|
16k6n
|
|
n
|
|
|
n
|
|
2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sup sup
|
|
max
|
|
R0
|
|
s,
|
k
|
|
|
|
<
|
+
|
|
|
,
|
|
|
|
(2.122)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
where Wn, Wn0, Rn and Rn0 are defined respectively by (2.5), (2.75), (2.4) and (2.76).
|
|
|
|
Let us show (2.119). Observe that
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16k6n n
|
|
n
|
|
6
|
|
n1/2 16k6n
|
|
k
|
1,s (
|
|
i) !
|
2
|
|
|
n1/2 16k6n
|
|
n
|
2,s
|
j
|
|
|
2
|
|
|
|
|
|
+ 2
|
|
|
|
|
k
|
|
2
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
j=k+1
|
|
|
|
|
max W
|
s,
|
|
|
2
|
|
|
max
|
|
X
|
|
|
|
|
X
|
|
|
|
|
|
|
|
|
|
|
|
|
max
|
X
|
h
|
(X )
|
|
|
|
|
|
|
|
h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(2.123)
|
hence using Theorem A.3 two times gives (2.119).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Let us show (2.120). In view of (2.75), the equality
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
W 0 s, t
|
W s, t [nt] (n − [nt]) 1
|
|
n−1
|
n i h X
|
|
n
|
j
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X
|
|
|
|
|
X
|
|
|
|
n ( ) =
|
|
n ( ) −
|
|
n3/2
|
|
n
|
|
i=1
|
( − ) 1,s ( i) +
|
j=2
|
( −1)
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
|
holds hence it suffices to show that
|
|
|
|
|
|
|
|
|
|
|
|
|
sup sup
|
1
|
E
|
n−1
|
(n
|
|
i) h1,s (Xi) +
|
n
|
(j
|
|
1) h2,s (Xj)
|
|
2 < +
|
|
.
|
3
|
|
−
|
X
|
−
|
|
∞
|
n>1 s
|
R n
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
∈
|
|
|
X
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i=1
|
|
|
|
|
|
|
j=2
|
|
|
|
|
|
|
|
|
h2,s ( Xj)
(2.124)
(2.125)
21
This follows from a rewriting of the sums in terms of partial sums of h1,s (Xi) and h2,s (Xi) and an application of Theorem A.3.
Let us show (2.121). Letting hi,j := h3,s (Xi, Xj), we get in view of (2.61) that
|
|
|
|
E
|
max Rn
|
s,
|
k
|
|
|
2
|
= E
|
|
|
2
|
|
max
|
|
|
|
|
hi,`
|
|
2 + E
|
|
|
2
|
|
max
|
k n
|
h`,j
|
|
2 .
|
|
|
|
|
|
3
|
|
|
|
|
|
3
|
|
|
|
"
|
16k6n
|
n
|
|
#
|
|
|
|
|
n
|
16k6n
|
|
i<`
|
|
k
|
|
|
|
|
|
n
|
16k6n
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
`=1 j=`+1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6X6
|
|
|
|
|
|
|
|
X X
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(2.
|
|
Boundedness follows from Lemma A.5.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Let us show (2.122). Noticing that
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R0
|
(
|
s, t
|
) =
|
R
|
|
|
|
s, t
|
)
|
|
|
|
1
|
|
[nt] (n − [nt])
|
|
|
|
|
|
h
|
|
X , X
|
,
|
(2.127)
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n
|
|
|
|
|
|
n
|
|
|
|
|
|
− n3/2
|
|
|
|
n
|
|
|
|
|
|
|
|
|
|
3,s (
|
i
|
j)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2
|
|
|
i
|
|
n
|
|
|
|
|
|
|
|
|
it suffices to show, in view of (2.121), that
|
|
|
|
16X6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sup sup
|
|
|
1
|
E
|
|
|
|
|
|
h3,s (Xi
|
, Xj)
|
|
2 < +
|
∞
|
.
|
|
|
(2.128)
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
|
|
|
|
|
n>1 s
|
∈
|
R n
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16X6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
This can be seen by an other use of Lemma A.5.
Do'stlaringiz bilan baham: |