Convergence of the empirical two-sample -statistics with -mixing data


Download 380.03 Kb.
bet36/37
Sana16.11.2020
Hajmi380.03 Kb.
#146511
1   ...   29   30   31   32   33   34   35   36   37

























sup sup




max




R










s,

k










<

+







,










(2.121)

















































#





































"









































































































n>1 s∈R E

16k6n




n







n




2



































































sup sup




max




R0




s,

k










<

+







,










(2.122)





























































where Wn, Wn0, Rn and Rn0 are defined respectively by (2.5), (2.75), (2.4) and (2.76).










Let us show (2.119). Observe that



























































































16k6n n




n




6




n1/2 16k6n




k

1,s (




i) !

2







n1/2 16k6n




n

2,s

j







2
















+ 2













k




2




1

















































1




















































i=1























































j=k+1













max W

s,







2







max




X













X





































max

X

h

(X )






















h






























































































































































































































































































































































































(2.123)

hence using Theorem A.3 two times gives (2.119).



































































Let us show (2.120). In view of (2.75), the equality






































































































































































W 0 s, t

W s, t [nt] (n − [nt]) 1




n−1

n i h X




n

j











































X













X










n ( ) =




n ( ) −




n3/2




n




i=1

( − ) 1,s ( i) +

j=2

( −1)




























2































holds hence it suffices to show that





































sup sup

1

E

n−1

(n




i) h1,s (Xi) +

n

(j




1) h2,s (Xj)




2 < +




.

3






X








n>1 s

R n






















































X













































































































i=1



















j=2


























h2,s (Xj)
(2.124)

(2.125)


21
This follows from a rewriting of the sums in terms of partial sums of h1,s (Xi) and h2,s (Xi) and an application of Theorem A.3.



Let us show (2.121). Letting hi,j := h3,s (Xi, Xj), we get in view of (2.61) that










E

max Rn

s,

k







2

= E







2




max













hi,`




2 + E







2




max

k n

h`,j




2 .
















3
















3










"

16k6n

n




#













n

16k6n




i<`




k
















n

16k6n
































































1





































`=1 j=`+1






































































6X6






















X X

























































































































(2.




Boundedness follows from Lemma A.5.





























































126)



































































Let us show (2.122). Noticing that









































































R0

(

s, t

) =

R










s, t

)










1




[nt] (n − [nt])
















h




X , X

,

(2.127)













(








































n
















n
















n3/2










n




























3,s (

i

j)





















































































2







i




n

























it suffices to show, in view of (2.121), that










16X6




















































sup sup







1

E
















h3,s (Xi

, Xj)




2 < +



.







(2.128)

























3


































n>1 s



R n


































































































































16X6




































































































































































i
This can be seen by an other use of Lemma A.5.

Download 380.03 Kb.

Do'stlaringiz bilan baham:
1   ...   29   30   31   32   33   34   35   36   37




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling