Convergence of the empirical two-sample -statistics with -mixing data


Download 380.03 Kb.
bet21/37
Sana16.11.2020
Hajmi380.03 Kb.
#146511
1   ...   17   18   19   20   21   22   23   24   ...   37
Proposition 2.4. Let Rn be defined by (2.4). Under the conditions of Theorem 1.1, the following convergence holds:
sup sup |Rn (s, t)| → 0 in probability. (2.56)

R6s6R 06t61


As a first step, we can look to the control of the supremum on t for a fixed s. Then













sup










n (







) =










3/2 1 ` n 1




`

n







s

i

j




























06t61 |






















|










n




































































































1




6 6 − i=1 j=`+1




















































R







s, t

























max




X X

h







(X,X)




.







(2.57)

























































































































































































































The problem is that the index ` over which we take

the maximum appear




in both sums and

we cannot directly apply maximal inequality in Lemma A.5.































Here is a way to overcome this issue. Denote hi,j

:= h3,s (Xi, Xj) and for a fixed n, S` :=

`

n







i,j, 1 6




6







`

1

n










0







`−1 n










6




6

























Pi=1

Pj=`+1

h

`

n




S






















`




n,














































and







= 0. Then for 2











































S` S`−1 =

X X

hi,j

X X








































(2.58)





































hi,j
































































i=1 j=`+1



















i=1 j=`






































































`−1 n






















n







`−1 n










`−1




























=

X X

hi,j +

X







X X




X







(2.59)














































h`,j
















hi,j







hi,`































i=1 j=`+1



















j=`+1







i=1 j=`+1

i=1








































n




























`−1



































































=




X

h`,j

X

hi,`











































(2.60)



















j=`+1

i=1




















































































































































hence










k




n




























k




























k

n
















































































































6X6



















X X




hi,j =

X






















X X

h`,j







(2.61)







Sk

=

























(S`S`−1) =






















hi,`.













i=1 j=k+1



















`=1

























`=1 j=`+1










1 i<`




k



Therefore, the maximum over k can be treated by using the maximum of degenerated U-



statistic for the term

16i<`6k hi,`.




The other one can be reduced to a similar contribution

data and (X

, . . . , X ) instead of (X , . . . , X




).

by using this time theP

n










1







1







n




Using Lemma A.5, we derive that for each fixed s,



















P 06t61

|




n (




)|

6




n










sup




R




s, t




> ε

−2

log n

,




(2.62)


















where the constant C depends only on (β (k))k>1.


We divide the interval [−R, R] in intervals of length δn, where δn with be specified later.

Let ak := −R + 2Rkδn and the interval




Ik := [ak−1, ak], 1 6 k 6 [1/δn] + 1 =: Bn

(2.63)

(here for simplicity, we ommit the dependence in n for ak and Ik).








































13

Then


































sup sup

|

R




(s, t)

| 6

max sup sup

|

R

s, t

.

(2.64)

R6s6R 06t61




n




16k6Bn sIk 06t61

n (

)|







In order to handle the supremum on Ik, we need the following lemma:
Download 380.03 Kb.

Do'stlaringiz bilan baham:
1   ...   17   18   19   20   21   22   23   24   ...   37




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling