Copyright 1996 Lawrence C. Marsh 0 PowerPoint Slides for Undergraduate Econometrics by


Download 0.54 Mb.
Pdf ko'rish
bet5/13
Sana04.11.2020
Hajmi0.54 Mb.
#140982
1   2   3   4   5   6   7   8   9   ...   13
Bog'liq
allChap6


sample residuals 

are


not independent since they use up two degrees

of freedom by using

 

b



and 

b



to estimate 

β



and  

β

2



.

   We get only T

2 degrees of freedom instead of T.



Chi-Square degrees of freedom

5.10


Copyright 1996    Lawrence C. Marsh

Student-t Distribution

t =                    ~  t

(m)

Z

V / m


where  Z ~ N(0,1)

and  V  ~  

χ

(m)


2

5.11


Copyright 1996    Lawrence C. Marsh

t  =                         ~   t

(m)

Z

V / 


(

 

T



− 

2)

where  Z = 



(b

− β



2

var(b



2

)

and  var(b



2

) = 


σ

 

2



Σ

( x


 x )



2

5.12


Copyright 1996    Lawrence C. Marsh

t  = 


Z

V / (T-2)

(b



− β



2

var(b



2

)

t  =                 



(T

2)



 

σ

 



2

σ

 



2

^

(



 

T

− 



2)

V  = 


(T

2)



 

σ

 



2

σ

 



2

^

5.13



24

Copyright 1996    Lawrence C. Marsh

var(b


2

) = 


σ

 

2



Σ

( x


 x )



2

(b



− β

2



σ

 

2



Σ

( x


 x )



2

t  =                                     =

(T



2)



 

σ

 



2

σ

 



2

^

(



 

T

− 



2)

(b



− β

2



σ

 

2



Σ

( x


 x )



2

^

  notice the



cancellations

5.14


Copyright 1996    Lawrence C. Marsh

(b



− β

2



σ

 

2

Σ

( x


 x )



2

^

t   =                         =



(b

− β



2

var(b



2

)

^



 t  = 

(b



− β

2



se(b

2

)



5.15

Copyright 1996    Lawrence C. Marsh

Student’s    t - statistic

 t  =                     ~  t 

(T



2)

(b



− β

2



se(b

2

)



 t  

has  a  Student-t  Distribution 

 with

 T

− 



2

  degrees of freedom. 

5.16

Copyright 1996    Lawrence C. Marsh

Figure 5.1  Student-t  Distribution

(

1−α


)

t

0



f(t)

-t

c



t

c

α



/

2

α



/

2

red area



 = rejection region for 2-sided test

5.17


Copyright 1996    Lawrence C. Marsh

probability statements

P(-t



 



 t 


 t

c



)   =  1 

 



α

P( t < -t

)   =  P( t > t



)   =   


α/

2

P(-t



 



              

 t



c

)   =  1 

 

α



(b

− β



2

se(b



2

)

5.18



Copyright 1996    Lawrence C. Marsh

Confidence Intervals

Two-sided (1

−α

)x100% C.I. for 



β

1

:

b

1

 



 t

α



/2

[se(b


1

)],   b


1

 + t


α

/2

[se(b



1

)]

b



2

 



 t

α

/2



[se(b

2

)],   b



2

 + t


α

/2

[se(b



2

)]

Two-sided (1



−α

)x100% C.I. for 

β

2

:



5.19

25

Copyright 1996    Lawrence C. Marsh

Student-t vs. Normal Distribution

1.  Both are symmetric bell-shaped distributions.

2.  Student-t distribution has fatter tails than the normal.

3.  Student-t converges to the normal for infinite sample.

4.  Student-t conditional on degrees of freedom (df).

5.  Normal is a good approximation of Student-t for the first few 

decimal places when df > 30 or so.

5.20

Copyright 1996    Lawrence C. Marsh

Hypothesis Tests

1.  A null  hypothesis, H

0

.



2.  An alternative  hypothesis, H

1

.



3.  A test statistic.

4.  A rejection region.

5.21

Copyright 1996    Lawrence C. Marsh

Rejection Rules

1.  

Two-Sided Test

:  

If the value of the test statistic falls in the critical region in 

either 

tail 


of the t-distribution, then we reject the null hypothesis in favor 

of the alternative.

2.  

Left-Tail Test

:

If the value of the test statistic falls in the critical region which lies 

in the 

left tail 



of the t-distribution, then we reject the null 

hypothesis in favor of the alternative.

2.  

Right-Tail Test

:

If the value of the test statistic falls in the critical region which lies 

in the 

right tail 



of the t-distribution, then we reject the null 

hypothesis in favor of the alternative.

5.22

Copyright 1996    Lawrence C. Marsh

Format for Hypothesis Testing

1.  Determine null and alternative hypotheses.

2.  Specify the test statistic and its distribution 

   as if the null hypothesis were true.

3.  Select 

α

 and determine the rejection region.



4.  Calculate the sample value of test statistic.

5.  State your conclusion.

5.23

Copyright 1996    Lawrence C. Marsh

practical vs. statistical 

significance in economics

Practically

 but not statistically significant:

When sample size is very small, a large average gap between 

the salaries of men and women might not be statistically 

significant.  

Statistically

 but not practically significant:

When sample size is very large, a small correlation (say, 

ρ

 = 



0.00000001) between the winning numbers in the PowerBall 

Lottery and the Dow-Jones Stock Market Index might be 

statistically significant.

5.24


Copyright 1996    Lawrence C. Marsh

Type I and Type II errors



Type I 

error:


We make the mistake of rejecting the null 

hypothesis when it is true.

α

 = P(rejecting H



0

 when it is true).



Type II 

error:


We make the mistake of failing to reject the null 

hypothesis when it is false.

β

 

= P(failing to reject H



0

 when it is false).

5.25


26

Copyright 1996    Lawrence C. Marsh

Prediction Intervals

A (1

−α

)x100% prediction interval for y



o

 is:

y

o

  ±  t



c

 se( f )

^

se( f ) =    var( f )



^

f  = y

o

 



 y

o



^

Σ(

x



 

t

 



 

x



)

2

var( f ) = 

σ

 



  1 +       +

^

1



Τ

(

x



 

o

 



 

x



)

2

^

5.26



Copyright 1996    Lawrence C. Marsh

The Simple Linear

 Regression Model

Chapter 6

Copyright © 1997 John Wiley & Sons, Inc.  All rights reserved.  Reproduction or translation of this work beyond 

that permitted in Section 117 of the 1976 United States Copyright Act without the express written permission of the 

copyright owner is unlawful.  Request for further information should be addressed to the Permissions Department, 

John Wiley & Sons, Inc.  The purchaser may make back-up copies for his/her own use only and not for distribution

 or resale.  The Publisher assumes no responsibility for errors, omissions, or damages, caused by the use of these 

programs or from the use of the information contained herein.

6.1


Copyright 1996    Lawrence C. Marsh

Explaining Variation in 

y

t

Predicting y



t

 without any explanatory variables:

y

t

 = 



β

+ e



t

Σ

e



t

 = 


Σ

(y

t



 

 



β

1

)



2

2

t = 1



t = 1

T

T

−2



 

Σ

(y



t

 



 b

1

) = 0



∂Σ

e

t



2

t = 1

t = 1

T

T

β



1

Σ

(y



t

 



 b

1

) = 0



t = 1

T

Σ

y



t

 



 Tb

1

 = 0



t = 1

T

b

1



 = y

Why not y?

6.2

Copyright 1996    Lawrence C. Marsh

Explaining Variation in 

y

t

y



t

 = b


+ b


2

x



+ e

t

^



Unexplained variation:

y

t



 = b

+ b



2

x

t



^

Explained variation:

e



 = y



 y



 =  y


t

 



 b

− 



b

2

x



t

^

^



6.3

Copyright 1996    Lawrence C. Marsh

Explaining Variation in 

y

t

y



t

 = y


+ e


t

^

Why not y?



^

y

t



 

 y = y



 y + e



t

^

^



 using y as baseline

SST  =  SSR  +  SSE

Σ

(y

t



y)

2



 = 

Σ

(y



t

y)



2

 +

Σ



e

t

t = 1



T

^

^



T

T

t = 1

t = 1

2

cross



product

term


drops

out


6.4

Copyright 1996    Lawrence C. Marsh

Total Variation in 

y

t

 SST = total sum of squares 



SST measures variation of 

y

t



 around 

y

Σ



(y

− 



y)

2

t = 1



T

SST  


=

6.5


27

Copyright 1996    Lawrence C. Marsh

Explained Variation in 

y

t

 SSR = regression sum of squares 



y

t

 = b



+ b


2

x

t



^

Fitted y


t

 values:


^

SSR measures variation of 

y

t

 around 



y

^

Σ



(y

− 



y)

2

t = 1



T

SSR  


=

^

6.6



Copyright 1996    Lawrence C. Marsh

Unexplained Variation in 

y

t

 SSE = error sum of squares 



SSE measures variation of 

y

t



 around 

y

t



^

e

t



 =  y

t



y

 = y



t

 

− 



b



 b

2

x



t

^

^



Σ

(y



− 

y

t



)

2  


Σ

e



t



t = 1



T

SSE  


=

^

t = 1



T

^

6.7



Copyright 1996    Lawrence C. Marsh

Analysis of Variance Table



^

Table 6.1   Analysis  of  Variance  Table   

Source of                      Sum of        Mean

Variation         DF        Squares       Square 

Explained          1            SSR         SSR/1

Unexplained    T-2          SSE      SSE/(T-2)

                                                         [

σ

2



]

Total                T-1           SST                     

6.8

Copyright 1996    Lawrence C. Marsh

Coefficient of Determination



  R



2

 



 1

What proportion of the variation 

in y

t

 is explained?



SSR

SST


R

2

 =



6.9

Copyright 1996    Lawrence C. Marsh

Coefficient of Determination

SST = SSR + SSE

SST       SSR     SSE

SST       SST     SST

=         

+

SSR     SSE



SST     SST

1  =         

+

Dividing


by SST

SSR


SST

R

2



 =         =  1 

SSE



SST

6.10


Copyright 1996    Lawrence C. Marsh

 R

2

 is only a descriptive  measure.

R

2



 does not measure the quality

of the regression model.

 Focusing solely on maximizing 

 R

2



 is not a good idea.

Coefficient of Determination

6.11


28

Copyright 1996    Lawrence C. Marsh

cov(X,Y)


ρ

 =

var(X)    var(Y)



Correlation Analysis

cov(X,Y)


r =

var(X)    var(Y)

Population:

^

^



^

Sample:

6.12

Copyright 1996    Lawrence C. Marsh

Correlation Analysis

var(X) =

^

Σ



(x

− 



x)

2

/



(

T



1

)

t = 1



T

var(Y) =


^

Σ

(y



− 

y)



2

/

(



T

1



)

t = 1

T

cov(X,Y) =

^

Σ

(x



− 

x)(y



− 

y)



/

(

T



1

)



t = 1

T

6.13


Copyright 1996    Lawrence C. Marsh

Correlation Analysis

Σ

(x



− 

x)



Σ

(y



− 

y)

2



t = 1

T

Σ

(x



− 

x)(y



− 

y)



t = 1

T

r =


t = 1

T

 Sample Correlation Coefficient 

6.14

Copyright 1996    Lawrence C. Marsh

 Correlation Analysis and R



For simple linear regression analysis:

  r

 

2



  =  R

2  


   R

2  


is also the correlation   

        between  

y

t

 and 



y

t

 measuring “goodness of fit”.



^

6.15


Copyright 1996    Lawrence C. Marsh

Regression Computer Output



Table 6.2   Computer Generated Least Squares Results    

       (1)             (2)              (3)            (4)               (5)

                    Parameter   Standard    T for H0:

Variable       Estimate       Error     Parameter=0   Prob>|T|

INTERCEPT  

 40.7676     22.1387        1.841         0.0734

X                    0.1283       0.0305        4.201         0.0002

Typical computer output of regression estimates:

6.16

Copyright 1996    Lawrence C. Marsh

Regression Computer Output

se(b

1

) =     var(b



1

)    =    490.12     =   22.1287



^

se(b


2

) =     var(b

2

)    =    0.0009326   =  0.0305



^

b

1  



=  40.7676

b

2  



=  0.1283

se(b


1

)

t  =           =                =  



1.84

b

1



40.7676

22.1287


se(b

2

)



b

2

t  =           = 



                 

=   


4.20

0.1283


0.0305

6.17


29

Copyright 1996    Lawrence C. Marsh

Regression Computer Output



Table 6.3   Analysis  of  Variance  Table       

                                   Sum of          Mean

Source          DF        Squares         Square    

Explained       1    25221.2229   25221.2229

Unexplained 38    54311.3314    1429.2455

Total             39    79532.5544

                                   R-square:  0.3171

Sources of variation in the dependent variable:

6.18

Copyright 1996    Lawrence C. Marsh

Regression Computer Output

SSR

SST


R

2

 =         =  1 



−          

0.317



SSE

SST


SSE /(T-2) 

=

   



σ

2

  



=

  1429.2455   

^

SSE = 


Σ

e

t



2  

=  54311


^

SST = 


Σ

(y

t



y)

2  



=  79532

SSR = 


Σ

(y

t



y)

2  



=  25221

^

6.19



Copyright 1996    Lawrence C. Marsh

y

t



 = 40.7676 + 0.1283x

t

(s.e.) (22.1387) (0.0305)



y

t

 = 40.7676 + 0.1283x



t

(t)     (1.84)     (4.20)

Reporting Regression Results

6.20


Copyright 1996    Lawrence C. Marsh

R

2



 =  

0.317


Reporting Regression Results

This R


2

 value may seem low but it is

typical in studies involving 

cross-sectional

data analyzed at the individual or 



micro

 level.


 A considerably higher R

2

 value would be



expected in studies involving 

time-series

 data


analyzed at an aggregate or 

macro

 level.


6.21

Copyright 1996    Lawrence C. Marsh

 

Effects of Scaling the Data 



 Changing the scale of x 

y

t



 = 

β



+ (c

β

2



)(x

t

/c)



 

+ e


t

y

t



 = 

β



β

2



x

+ e



t

y

t



 = 

β



β

2



x

+ e



t

* *


β

= c



β

2

*



x

= x



t

/c

 



*

where


and

The estimated

coefficient and

standard error

change but the

other statistics

are unchanged.

6.22


Copyright 1996    Lawrence C. Marsh

 Effects of Scaling the Data 

 Changing the scale of y 

y

t



/c = (

β

1



/c)

 

+ (



β

2

/c)x



+ e


t

/c 


y

t

 = 



β



β

2

x



+ e


t

β



β

1



/c

 

*



and

All statistics

are changed

except for

the t-statistics

and R


Download 0.54 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   13




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling