Copyright 1996 Lawrence C. Marsh 0 PowerPoint Slides for Undergraduate Econometrics by
Download 0.54 Mb. Pdf ko'rish
|
allChap6
Regression Model - I 1. The average value of y, given x, is given by the
regression: E(y) = β
+ β
x 2. For each value of x, the values of y are distributed around their mean with
: var(y) = σ 2 3. The values of y are uncorrelated, having zero covariance and thus no linear relationship: cov(y
4. The variable x must take at least two different values, so that x ≠
where c is a constant. 3.9
Copyright 1996 Lawrence C. Marsh 5. (optional) The values of y are normally distributed about their mean for each value of x:
β
+ β
x), σ
] One more assumption that is often used in practice but is not required for least squares: 3.10
Copyright 1996 Lawrence C. Marsh The Error Term y is a random variable composed of two parts : I. Systematic component: E(y) = β
+ β
x
This is the mean of y . II. Random component: e = y - E(y) = y - β
- β
x
This is called the random error .
Together E(y) and e form the model :
β
β
x + e 3.11
Copyright 1996 Lawrence C. Marsh Figure 3.5 The relationship among y, e and the true regression line.
y 4 y 1 y 2 y 3 x 1 x 2 x 3 x 4 } } { { e 1 e 2 e 3 e 4 E(y) = β 1 + β 2 x x y 3.12 Copyright 1996 Lawrence C. Marsh }
}
y 4 y 1 y 2 y 3 x 1 x 2 x 3 x 4 { { e 1 e 2 e 3 e 4 x y Figure 3.7a The relationship among y, e and the fitted regression line. ^ y = b 1 + b
2 x ^ . . . . y 1 y 2 y 3 y 4 ^ ^ ^ ^ ^ ^ ^ ^ 3.13 15 Copyright 1996 Lawrence C. Marsh { { . . . . . y 4 y 1 y 2 y 3 x 1 x 2 x 3 x 4 x y Figure 3.7b The sum of squared residuals from any other line will be larger. y = b
1 + b
2 x ^ . . . y 1 ^ y 3 ^ y 4 ^ y = b
1 + b
2 x ^ * * * * e 1 ^ * e 2 ^ * y 2 ^ * e 3 ^ * * e 4 ^ * * { { 3.14
Copyright 1996 Lawrence C. Marsh f(
) f(e)
f(y) Figure 3.4 Probability density function for e and y 0 β
+ β 2 x 3.15
Copyright 1996 Lawrence C. Marsh The Error Term Assumptions 1. The value of y, for each value of x, is
β
+ β
x + e 2. The average value of the random error e is: E(e) = 0 3. The variance of the random error e is: var(e) = σ
= var(y) 4. The covariance between any pair of e’s is: cov(e
5. x must take at least two different values so that x ≠
, where c is a constant. 6. e is normally distributed with mean 0, var(e)= σ 2
(optional) e ~ N(0, σ
) 3.16
Copyright 1996 Lawrence C. Marsh Unobservable Nature of the Error Term 1.
Unspecified factors / explanatory variables, not in the model, may be in the error term. 2. Approximation error is in the error term if relationship between y and x is not exactly a perfectly linear relationship. 3. Strictly unpredictable random behavior that may be unique to that observation is in error. 3.17
regression values: y
t
β 1 + β 2 x t + e t
regression line: E(y
t
t ) = β 1 + β 2 x t
regression values: y
t
1 + b
2 x
t + e
t
regression line: y
t
1 + b
2 x
t ^ ^ 3.18 Copyright 1996 Lawrence C. Marsh y
t =
β 1 +
β 2 x t + e t Minimize error sum of squared deviations: S( β 1 , β 2 ) = Σ ( y
t - β 1 - β 2 x
t ) 2 (3.3.4) t=1
T e
t = y
t - β 1 -
β 2 x t
3.19 16 Copyright 1996 Lawrence C. Marsh Minimize w.
r.
t.
β 1
and β 2 : S( β 1 , β 2 ) =
Σ ( y t - β 1
- β 2 x
t ) 2 (3.3.4) t =1 T
- 2 Σ
y
t - β 1 - β 2 x
t )
= - 2
Σ x
t
( y
t - β 1 - β 2 x
t )
∂ S( . ) ∂β 1 ∂ S( . ) ∂β 2 Set each of these two derivatives equal to zero and solve these two equations for the two unknowns: β 1
β 2 3.20 Copyright 1996 Lawrence C. Marsh S(.) S(.) β i b i . . . Minimize w.
r.
t.
β 1
and β 2 : S( . ) = Σ ( y
t - β 1 - β 2 x
t ) 2 t =1 T
∂ S(.) ∂β i
∂ S(.) ∂β i >0
∂ S(.) ∂β i =0 3.21
Copyright 1996 Lawrence C. Marsh To minimize S(.), you set the two derivatives equal to zero to get:
- 2
Σ ( y t - b 1
- b 2 x
t ) = 0 = - 2
Σ x
t
( y
t - b 1 - b 2 x
t ) = 0 ∂ S(
) ∂β 1 ∂ S( . ) ∂β 2 When these two terms are set to zero, β 1 and β 2 become b 1 and b 2 because they no longer represent just any value of β 1
β 2 but the special values that correspond to the minimum of S( . ) . 3.22 Copyright 1996 Lawrence C. Marsh - 2
Σ ( y t - b 1
- b 2 x
t ) = 0
- 2 Σ x
t
( y
t - b 1 - b 2 x
t ) = 0
Σ
t
- T b 1
- b 2 Σ
x t
Σ x
t
y t
-
b 1 Σ
x
t -
b 2 Σ
x t = 0 2 T b 1
+ b 2 Σ
x t
Σ y
t
b 1 Σ
x
t +
b 2 Σ
x t = Σ x
t
y t
2 3.23
Copyright 1996 Lawrence C. Marsh Solve for b 1
b 2 using definitions of x and
y
T b 1
+
b 2 Σ x
t = Σ y t
b 1
Σ
x t
+
b 2 Σ
x t = Σ x
t
y t
2 T
Σ
t
y t
- Σ
x
t Σ y t
T Σ
x
t
- ( Σ
x t ) 2 2 b 2 = b 1 = y
- b
x 3.24
Copyright 1996 Lawrence C. Marsh elasticities percentage change in y percentage change in x η
= ∆ x/x ∆ y/y = ∆ y x ∆ x y Using calculus, we can get the elasticity at a point: η
= lim = ∆ y x ∆ x y ∂ y x ∂ x y ∆
→
0 3.25
17 Copyright 1996 Lawrence C. Marsh E(y) = β 1
+ β 2 x ∂ E(y) ∂ x =
β 2 applying elasticities ∂ E(y)
∂ x =
β 2 η
= E(y)
x E(y)
x 3.26
Copyright 1996 Lawrence C. Marsh estimating elasticities ∂ y
x =
b 2 η = y x y x ^ y t = b 1 + b 2 x t = 4 + 1.5 x t ^ x
= 8 = average number of years of experience y
=
= 1.5 = 1.2 8 10 =
b 2 η y x ^ 3.27 Copyright 1996 Lawrence C. Marsh Prediction y t
t ^ Estimated regression equation: x t
= years of experience y t =
predicted wage rate ^ If x t = 2 years, then y t = $7.00
per hour . ^ If x t = 3 years, then y t = $8.50
per hour . ^ 3.28 Copyright 1996 Lawrence C. Marsh log-log models ln(y) = β 1 + β 2 ln(x) ∂ ln(y) ∂ x ∂ ln(x) ∂ x =
β 2 ∂ y ∂ x =
β 2 1 y ∂ x ∂ x 1 x 3.29
Copyright 1996 Lawrence C. Marsh ∂ y ∂ x =
β 2 1 y ∂ x ∂ x 1 x =
β 2 ∂ y ∂ x x y
=
β 2 ∂ y ∂ x x y η = 3.30
Copyright 1996 Lawrence C. Marsh Properties of Least Squares Estimators Chapter 4 Copyright © 1997 John Wiley & Sons, Inc. All rights reserved. Reproduction or translation of this work beyond that permitted in Section 117 of the 1976 United States Copyright Act without the express written permission of the copyright owner is unlawful. Request for further information should be addressed to the Permissions Department, John Wiley & Sons, Inc. The purchaser may make back-up copies for his/her own use only and not for distribution or resale. The Publisher assumes no responsibility for errors, omissions, or damages, caused by the use of these programs or from the use of the information contained herein. 4.1
18 Copyright 1996 Lawrence C. Marsh y t = household weekly food expenditures Simple Linear Regression Model y t = β 1 + β 2 x t
+ ε t x t
= household weekly income For a given level of x t , the expected level of food expenditures will be:
E(
t | x t ) = β 1 + β 2 x t 4.2
Copyright 1996 Lawrence C. Marsh 1. y t = β 1 + β 2 x t
+ ε t 2. E( ε t ) =
y t
= β 1 + β 2 x t
var( ε t ) =
σ
= var( y t ) 4. cov( ε i , ε j ) =
y i
y j
=
x t ≠ c
for every observation 6. ε t ~N(0, σ
2 ) <=> y t ~ N( β 1 + β 2 x t , σ
2 )
Assumptions of the Simple Linear Regression Model 4.3
The population parameters
β
and
β 2 are Download 0.54 Mb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling