Copyright 1996 Lawrence C. Marsh 0 PowerPoint Slides for Undergraduate Econometrics by


Download 0.54 Mb.
Pdf ko'rish
bet1/13
Sana04.11.2020
Hajmi0.54 Mb.
#140982
  1   2   3   4   5   6   7   8   9   ...   13
Bog'liq
allChap6


Copyright 1996    Lawrence C. Marsh

1.0


PowerPoint Slides for

Undergraduate Econometrics

by

Lawrence C. Marsh



To accompany:  Undergraduate Econometrics

by Carter Hill, William Griffiths and George Judge

Publisher:  John Wiley & Sons, 1997


1

Copyright 1996    Lawrence C. Marsh

The Role of  

Econometrics 

in Economic Analysis

Chapter 1

Copyright © 1997 John Wiley & Sons, Inc.  All rights reserved.  Reproduction or translation of this work beyond 

that permitted in Section 117 of the 1976 United States Copyright Act without the express written permission of the 

copyright owner is unlawful.  Request for further information should be addressed to the Permissions Department, 

John Wiley & Sons, Inc.  The purchaser may make back-up copies for his/her own use only and not for distribution

 or resale.  The Publisher assumes no responsibility for errors, omissions, or damages, caused by the use of these 

programs or from the use of the information contained herein.

1.1


Copyright 1996    Lawrence C. Marsh

Using  Information:

1.  Information  from  

economic theory.

2.  Information  from  

economic data.

 

The  Role  of  Econometrics 



1.2

Copyright 1996    Lawrence C. Marsh

Understanding  Economic  Relationships:

federal

budget


Dow-Jones

Stock Index

trade

deficit


Federal Reserve

Discount Rate

capital gains tax

rent


control

laws


short term

treasury bills

power of

labor unions

crime rate

inflation

unemployment

money supply

1.3

Copyright 1996    Lawrence C. Marsh

economic theory

economic data

}

economic



decisions

To use information effectively



:

    *Econometrics* helps us combine

  economic theory

  and  


economic data 

  



Economic  Decisions 

1.4


Copyright 1996    Lawrence C. Marsh

Consumption

, c, is some function of 

income


, i :

c = f(i)


 For applied econometric analysis

 this consumption function must be 

 specified more precisely.

 

The Consumption Function 



1.5

Copyright 1996    Lawrence C. Marsh

demand


q

d

, for an individual commodity:

q

d

  =  f( p, p

c

, p


s

, i )


supply

q



s

, of an individual commodity:

q

s

  =  f( p, p



c

, p


f

 )

p = own price;    p



c

 = price of complements;

p

s

 = price of substitutes;    i = income

p = own price;    p

c

 = price of competitive products;

p

s

 = price of substitutes;    p



f

 = price of factor inputs

demand

supply


1.6

2

Copyright 1996    Lawrence C. Marsh

Listing the variables in an economic relationship is not enough.

For effective policy we must know the 

amount of change

needed for a policy instrument to bring about the desired

effect:


How much ?

• By 


how much 

should the Federal Reserve 

  raise interest rates to prevent inflation?

• By 


how much 

can the price of football tickets

  be increased and still fill the stadium?

1.7


Copyright 1996    Lawrence C. Marsh

Answering the  

How Much?  

question


Need to estimate parameters  

that are both:

1.   unknown

   and

2.   unobservable

1.8

Copyright 1996    Lawrence C. Marsh

Average or systematic behavior

over many individuals or many firms.

Not 

 

a single individual or single firm.



Economists are concerned with the

unemployment rate and not whether

a particular individual gets a job.

 

The Statistical Model 



1.9

Copyright 1996    Lawrence C. Marsh

The Statistical Model

Actual  vs.  Predicted Consumption:

Actual =  systematic part + random error

Systematic part provides prediction, f(i),

but actual will miss by random error, e.

Consumption, c, is function, f, of income, i, with error, e:

c = f(i) + e

1.10

Copyright 1996    Lawrence C. Marsh

c = f(i) + e

Need to define f(i) in some way.

To make consumption, c, 

linear function 



of income, i :

f(i) = 


β

1

 + 



β

2

 i



The statistical model then becomes:

c = 


β

1

 + 



β

2

 i + e



 

The Consumption Function 

1.11

Copyright 1996    Lawrence C. Marsh

•  Dependent variable , y, is focus of study

   (predict or explain changes in dependent variable).

•  Explanatory variables, X

2

 and X


3

, help us explain

    observed changes in the dependent variable.

y = 


β

1

 + 



β

2

 X



β



3

 X



+ e

 

The Econometric Model 



1.12

3

Copyright 1996    Lawrence C. Marsh

Statistical  Models

Controlled (experimental)

  vs.  

  Uncontrolled (observational)  



Uncontrolled experiment  (econometrics) explaining consump-

tion, y :   price,  

X

2

, and income, 



X

3

,  vary at the same time.



Controlled experiment  (“pure” science) explaining mass, y : 

pressure, 

X

2

, held constant when varying temperature, 



X

3



and vice versa.

1.13


Copyright 1996    Lawrence C. Marsh

 Econometric

 

model


 

 economic model

economic variables and parameters.

•  statistical model

sampling process with its parameters.

•  data


observed values of the variables.

1.14


Copyright 1996    Lawrence C. Marsh

• Uncertainty regarding an outcome.

• Relationships suggested by economic theory.

• Assumptions and hypotheses to be specified.

• Sampling process including functional form.

• Obtaining data for the analysis.

• Estimation rule with good statistical properties.

• Fit and test model using software package.

• Analyze and evaluate implications of the results.

• Problems suggest approaches for further research.

 

The  Practice  of  Econometrics 



1.15

Copyright 1996    Lawrence C. Marsh

Note:   the textbook uses the following symbol

   to mark sections with advanced material

:

“Skippy”



1.16

Copyright 1996    Lawrence C. Marsh

Some Basic 

Probability 

Concepts

Chapter 2

Copyright © 1997 John Wiley & Sons, Inc.  All rights reserved.  Reproduction or translation of this work beyond 

that permitted in Section 117 of the 1976 United States Copyright Act without the express written permission of the 

copyright owner is unlawful.  Request for further information should be addressed to the Permissions Department, 

John Wiley & Sons, Inc.  The purchaser may make back-up copies for his/her own use only and not for distribution

 or resale.  The Publisher assumes no responsibility for errors, omissions, or damages, caused by the use of these 

programs or from the use of the information contained herein.

2.1


Copyright 1996    Lawrence C. Marsh

random variable

:

      A variable whose value  is unknown until it is observed.



The value of a random variable results from an experiment.

The term random variable  implies the existence of some

known or unknown probability distribution defined over

the set of all possible values of that variable.   

In contrast, an arbitrary variable does not have a

probability distribution associated with its values.

Random  Variable

2.2


4

Copyright 1996    Lawrence C. Marsh

Controlled experiment 

values 

of explanatory variables are chosen 



with great care in accordance with

an appropriate 

experimental design

.

Uncontrolled experiment



 values

of explanatory variables consist of 

nonexperimental observations over

which the analyst has 

no control

.

2.3



Copyright 1996    Lawrence C. Marsh

discrete random variable

:

A discrete random variable can take only a finite



number of values, that can be counted by using 

the positive integers.

Example:  Prize money from the following

lottery is a discrete random variable:

first prize: $1,000

second prize:  $50

third prize: $5.75

since it has only four (a finite number) 

(count: 1,2,3,4) of possible outcomes:

$0.00;  $5.75;  $50.00;  $1,000.00

Discrete Random Variable

2.4


Copyright 1996    Lawrence C. Marsh

continuous random variable

:

A continuous random variable can take 



any real value (not just whole numbers) 

in at least one interval on the real line.

Examples:  

Gross national product (GNP)

money supply

interest rates

price of eggs

household income

expenditure on clothing

Continuous Random Variable

2.5

Copyright 1996    Lawrence C. Marsh

A discrete random variable that is restricted

to two possible values (usually 0 and 1) is

called a 



dummy variable 

(also, binary or

indicator variable).

Dummy variables account for qualitative  differences:

gender (0=male, 1=female), 

race (0=white, 1=nonwhite),

citizenship (0=U.S., 1=not U.S.), 

income class (0=poor, 1=rich).

Dummy  Variable

2.6


Copyright 1996    Lawrence C. Marsh

A list of all of the possible values taken

by a discrete random variable along with

their chances of occurring is called a probability

function or probability density function (pdf).

die


x

f(x)


one dot

1

1/6



two dots

2

1/6



three dots 3

1/6


four dots

4

1/6



five dots

5

1/6



six dots

6

1/6



2.7

Copyright 1996    Lawrence C. Marsh

A discrete random variable X 

has pdf, f(x), which is the 

probability

that X takes on the value x.   

f(x)  =  P(X=x)

0  <  f(x)  < 1

If  X takes on the n values:  x

1

, x



2

, . . . , x

n



then   f(x



1

) + f(x


2

)+. . .+f(x

n

) = 1.


Therefore,

2.8


5

Copyright 1996    Lawrence C. Marsh

Probability, f(x), for a discrete random

variable, X, can be represented by 

height

:

0

1



2

3

X



number, X, on Dean’s List of three roommates

f(x)


0.2

0.4

0.1

0.3

2.9

Copyright 1996    Lawrence C. Marsh

A continuous random variable uses 



area

 under a curve rather than the

height, f(x), to represent probability:

f(x)


X

$34,000


$55,000

.

.

per capita income, X, in the United States



0.1324

0.8676

red area


green area

2.10


Copyright 1996    Lawrence C. Marsh

 Since a continuous random variable has an



 uncountably infinite 

number of values,

 the probability of one occurring is 

zero

.

P [ X = a ]   =  P [ a < X < a ] = 



0

 Probability is represented by 



area

.

 Height alone has no 



area

.

 An interval for X is needed to get 



 

an 


area

 under the curve.

2.11

Copyright 1996    Lawrence C. Marsh

P [ a < X < b ] =    

  

f(x) dx



b

a

The 



area

 under a curve is the 

integral

 of


the equation that generates the curve:

For continuous random variables it is the

 

integral of f(x)



, and not f(x) itself, which

defines the area and, therefore, the 

probability

.

2.12



Copyright 1996    Lawrence C. Marsh

n

Rule 2:     

Σ

  

ax



i

  = a 


Σ

 

x



i

  

i = 1



i = 1

n

Rule 1:      

Σ

 

x



i

   =   x


1

  +  x


2

  + . . . + x

n

i = 1


n

Rule 3:     

Σ

 (

x



i

 +

 



y

i

)



   =   

Σ

 



x

i

   +  



Σ

 

y



i

i = 1


i = 1

i = 1


n

n

n

Note that summation is a linear operator

which means it operates term by term.

Rules  of  Summation

2.13

Copyright 1996    Lawrence C. Marsh

Rule 4:     

Σ

 (

ax



i

 +

 



by

i

)



   =  a 

Σ

 



x

i

   + b 



Σ

 

y



i

i = 1


i = 1

i = 1


n

n

n

 Rules of Summation (continued) 

Rule 5:     x    = 

    

 

Σ



 

x

i



   =

i = 1


n

n

1

x

1



  +  x

2

  + . . . + x



n

n

The definition of x as given in Rule 5 implies

the following important fact:

Σ

 (



x

i

 



− 

x)  = 0


i = 1

n

2.14


6

Copyright 1996    Lawrence C. Marsh

Rule 6:      

Σ

 

f(x



i

)   = f(x

1

)  + f(x


2

)  + . . . + f(x

n

)

i = 1



n

Notation:    

Σ

 

f(x



i

)   =   


Σ

 

f(x



i

)

   



=   

Σ

 



f(x

i

)



n

x

i = 1



n

Rule 7:    

Σ 

 

Σ



  

f(x


i

,y

j



)  =  

Σ 

[ f(x



i

,y

1



) + f(x

i

,y



2

)+. . .+ f(x

i

,y

m



)] 

i = 1


i = 1

n m

j = 1


The order of summation does not matter :

Σ 

 



Σ

  

f(x



i

,y

j



)  = 

Σ 

 



Σ

  

f(x



i

,y

j



)

i = 1


n m

j = 1


j = 1

m n

i = 1


 Rules of Summation (continued) 

2.15


Copyright 1996    Lawrence C. Marsh

The 


mean

 or arithmetic average of a

random variable is its mathematical

expectation or expected value, EX.

The Mean of a Random Variable

2.16


Copyright 1996    Lawrence C. Marsh

Expected Value

There are two entirely different, but mathematically

equivalent, ways of determining the expected value:

1.  Empirically:  

     The 



expected value 

of a random variable, X,

is the average value of the random variable in an

infinite number of repetitions of the experiment.

In other words, draw an infinite number of samples,

and average the values of X that you get.

2.17

Copyright 1996    Lawrence C. Marsh

Expected Value

2.  Analytically:  

     The 



expected value 

of a discrete random 

variable, X, is determined by weighting all 

the possible values of X by the corresponding

probability density function values, f(x), and 

summing them up.

E[X]  =  x

1

f(x



1

)  + x


2

f(x


2

)  + . . . + x

n

f(x


n

)

In other words:



2.18

Copyright 1996    Lawrence C. Marsh

 In the empirical case when the

 sample goes to infinity the values

 of X occur with a frequency

 equal to the corresponding f(x)  

 in the analytical expression.

 As sample size goes to infinity, the

 empirical and analytical methods

 will produce the same value.

 Empirical vs. Analytical 

2.19

Copyright 1996    Lawrence C. Marsh

x  =   


Σ

 

x



i

n

i = 1

where n is the number of sample observations.



Empirical

 (sample) mean:

E[X]  =   

Σ

 



x

i

 



f(x

i

)



i = 1

n

where n is the number of possible values of x

i

.

Analytical



 mean:

Notice how the meaning of n changes.

2.20


7

Copyright 1996    Lawrence C. Marsh

E X  =   

Σ  


x



f(x

i

)  

i=1

n

The expected value of 

X-squared

:

E X  =   

Σ  


x

i   

f(x

i

)  

i=1

n

2

2

It is important to notice that

 

f(x

i

) does not change!

The expected value of 

X-cubed

:

E X  =   

Σ  


x

i   

f(x

i

)  

i=1

n

3

3

The expected value of 

X

:

2.21


Copyright 1996    Lawrence C. Marsh

EX    =  0 (.1) + 1 (.3) + 2 (.3) + 3 (.2) + 4 (.1)

2

   EX

   

 = 0 (.1) + 1 (.3) + 2 (.3) + 3 (.2) + 4 (.1)

2

2

2

2

2

= 1.9

=  0  + .3 + 1.2 + 1.8 + 1.6

= 4.9

3

  EX   =  0 (.1) + 1 (.3) + 2 (.3) + 3 (.2) +4 (.1)

3

3

3

3

3

=  0  + .3 + 2.4 + 5.4 + 6.4

= 14.5

2.22


Copyright 1996    Lawrence C. Marsh

  E

 

[g(X)]  



=   

Σ  


g

(

x

i

)

   

f(x

i

)

n

i = 1

g(X) = g

1

(X) + g

2

(X)

  E

 

[g(X)]  



=   

Σ [


g

1

(x

i

) + g

2

(x

i

)]

 

f(x

i

)

n

i = 1

  E

 

[g(X)]  



=   

Σ 

g



1

(x

Download 0.54 Mb.

Do'stlaringiz bilan baham:
  1   2   3   4   5   6   7   8   9   ...   13




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling