Copyright 1996 Lawrence C. Marsh 0 PowerPoint Slides for Undergraduate Econometrics by


Copyright 1996    Lawrence C. Marsh


Download 0.54 Mb.
Pdf ko'rish
bet7/13
Sana04.11.2020
Hajmi0.54 Mb.
#140982
1   2   3   4   5   6   7   8   9   10   ...   13
Bog'liq
allChap6


Copyright 1996    Lawrence C. Marsh

Var-Cov Matrix

y

t

  = 



β

1

 + 



β

2

x



t2 

β



3

x

t3 



+ e

t

                              var(b



1

)     cov(b

1

,b

2



)   cov(b

1

,b



3

)

cov(b



1

,b

2



,b

3

) =  



   

cov(b


1

,b

2



)     var(b

2

)      cov(b



2

,b

3



                           cov(b

1

,b

3



)   cov(b

2

,b



3

)     var(b

3



The least squares estimators b



1

, b


2

, and b


have covariance matrix:

7.17


36

Copyright 1996    Lawrence C. Marsh

Normal


y

t

  = 



β

1

 + 



β

2

x



2t  

β



3

x

3t 



+. . .+ 

β

K



x

Kt 


+ e

t

y



t

 ~N  (


β

1

 + 



β

2

x



2t  

β



3

x

3t 



+. . .+ 

β

K



x

Kt

), 



σ

 

2



e

t

 ~ N(0, 



σ

 

2



)

This implies and is implied by:

b

k

 ~ N   



β

k

, var(b



k

)

z  =                  



~ N(0,1)  

for k = 1,2,...,K

b

k

 



 

β



k

var(b


k

)

Since 



b

k

 is a linear



function of the y

t

’s:



7.18

Copyright 1996    Lawrence C. Marsh

Student-t

b

k

 



 

β



k

var(b


k

)

^



t  =                  =

b

k



 

 



β

k

se(b



k

)

Since generally the population variance



of b

k

 , 



var(b

k

)



 , 

is unknown

we estimate



 it with             which uses 

σ

 



2

 instead of 

σ

 

2



.

var(b


k

)

^



^

t

 has a Student-t distribution with df=(



T

K



).

7.19


Copyright 1996    Lawrence C. Marsh

Interval  Estimation

b



− β



k

se(b


k

)

P   



t

c



 

               



 t

c      



=  1 

− α


t

c

  is critical value for (T-K) degrees of freedom 



such that   P(

 



 

 



t

c

) = 



α

 /2. 

P   

b

k



 

− 

t



se(b


k

)

 



 

β



k

 



  

b



+ t

se(b



k

)   


 

=  1 


− α

Interval endpoints:

b

k

 



− 

t



se(b

k

)



 ,  

b



+ t

se(b



k

)

7.20



Copyright 1996    Lawrence C. Marsh

Hypothesis Testing

 and

Nonsample Information

Chapter 8

Copyright © 1997 John Wiley & Sons, Inc.  All rights reserved.  Reproduction or translation of this work beyond 

that permitted in Section 117 of the 1976 United States Copyright Act without the express written permission of the 

copyright owner is unlawful.  Request for further information should be addressed to the Permissions Department, 

John Wiley & Sons, Inc.  The purchaser may make back-up copies for his/her own use only and not for distribution

 or resale.  The Publisher assumes no responsibility for errors, omissions, or damages, caused by the use of these 

programs or from the use of the information contained herein.

8.1


Copyright 1996    Lawrence C. Marsh

1.   Student-t Tests

2.   Goodness-of-Fit

3.   F-Tests

4.   ANOVA Table

5.   Nonsample Information

6.   Collinearity

7.   Prediction

Chapter 8:  Overview

8.2


Copyright 1996    Lawrence C. Marsh

Student - t  Test

y

t

  =  



β

1

  +  



β

2

X



t2  

β



3

X

t3



 

 



β

4

X



t4 

+ e


t

Student-t tests can be used to test any linear

combination of the regression coefficients:

H

0



:  

β

2



 + 

β

3



 + 

β

4



 = 1

H

0



β

1



 = 0

H

0



:  3

β

2



 

 7



β

3

 = 21



H

0

:  



β

2

 



 

β



3

 



 5

Every such t-test has exactly T

K degrees of freedom



where K=#coefficients estimated(including the intercept).

8.3


37

Copyright 1996    Lawrence C. Marsh

One  Tail  Test

y

t

  =  



β

1

  +  



β

2

X



t2  

β



3

X

t3



 

 



β

4

X



t4 

+ e


t

H

0



β

3



 

 0



H

1



β

3

 > 0



b

3

se(



b

3

)



t =

~  t


 

(

T



K

)

t



c

0

df = 



T

− 

K



     

T



− 

4

α



(1 − α)

8.4


Copyright 1996    Lawrence C. Marsh

Two  Tail  Test

y

t

  =  



β

1

  +  



β

2

X



t2  

β



3

X

t3



 

 



β

4

X



t4 

+ e


t

H

0



β

2



 = 0

H

1



β

2



 

 0



b

2

se(



b

2

)



t =

~  t


 

(

T



K

)

t



c

0

df = 



T

− 

K



     

T



− 

4

α/2



(1 − α)

-t

c



α/2

8.5


Copyright 1996    Lawrence C. Marsh

Goodness - of - Fit



  R



2

 



 1

 Coefficient of Determination 

SST

R

2



 =

=

Σ



(y

− 



y)

2

t = 1



T

^

SSR



Σ

(y



− 

y)

2



t = 1

T

8.6


Copyright 1996    Lawrence C. Marsh

Adjusted  R-Squared

 Adjusted Coefficient of Determination 

Original:

Adjusted:

SST/


(T

1)



R

2

  =  1 



SSE/


(T

K)



SST

=  1 


SSE


R

2

  =



SST

SSR


8.7

Copyright 1996    Lawrence C. Marsh

Computer  Output



Table 8.2   Summary of Least Squares Results                  

Variable     Coefficient      Std Error     t-value     p-value  

constant  

         104.79             6.48          16.17        0.000

price             

6.642              3.191      



2.081        0.042

advertising     2.984              0.167      17.868        0.000

b

2



se(

b

2



)

t =


=

6.642



3.191

2.081



=

8.8


Copyright 1996    Lawrence C. Marsh

Reporting  Your  Results

y

t

  =  



104.79

  



  

6.642 


X

t2  


2.984 


X

t3

^



(6.48)        (3.191)          (0.167)     (s.e.)

y

t



  =  

104.79


  

  



6.642 

X

t2  



2.984 


X

t3

^



(16.17)      (-2.081)        (17.868)      (t)

Reporting  t-statistics:

Reporting  standard errors:

8.9


38

Copyright 1996    Lawrence C. Marsh

Single Restriction F-Test

y

t

  =  



β

1

  +  



β

2

X



t2  

β



3

X

t3



 

 



β

4

X



t4 

+ e


t

H

0



β

2



 = 0

H

1



β

2



 

 0



df

d

 = 



T

− 



= 49

df

n



 = 

= 1



(SSE

R

 



 SSE


U

)/J

SSE

U

/(



T

K



)

F  =


(1964.758 

 1805.168)/1



1805.168/(52 

− 

3)



=

=   4.33


By definition this is the t-statistic squared:

t = 


 2.081


F  =  t

2

  = 



4.33

8.10


Copyright 1996    Lawrence C. Marsh

Multiple Restriction F-Test

y

t

  =  



β

1

  +  



β

2

X



t2  

β



3

X

t3



 

 



β

4

X



t4 

+ e


t

H

0



:  

β



= 0, 

β



= 0

H

1



:  H

0

 not true



df

d

 = 



T

− 



= 49

df

n



 = 

= 2



(SSE

R

 



 SSE


U

)/J

SSE

U

/(



T

K



)

F  =


First run the restricted

regression by dropping 

X

t2 


and 

X

t4 



to get SSE

R

.



Next run unrestricted regression to get SSE

U

 .



8.11

Copyright 1996    Lawrence C. Marsh

F-Tests


(SSE

R

 



 SSE


U

)/J

SSE

U

/(



T

K



)

F  =


 F-Tests of this type are always right-tailed , 

 even for left-sided or two-sided hypotheses,

 because any deviation from the null will

 make the F value bigger (move rightward).

0

F

c



α

(1 − α)


f(

F

)



F

8.12


Copyright 1996    Lawrence C. Marsh

F-Test of Entire Equation

y

t

  =  



β

1

  +  



β

2

X



t2  

β



3

X

t3



 + e

t

H



0

:  


β



β

= 0



H

1

:  H



0

 not true

df

d

 = 



T

− 



= 49

df

n



 = 

= 2



(SSE

R

 



 SSE


U

)/J

SSE

U

/(



T

K



)

F  =


(13581.35 

 1805.168)/2



1805.168/(52 

− 

3)



=

=   159.828

 We ignore 

β

1



.

 

Why? 

F





3.187

α 



0.05

Reject 


H

0

!



8.13

Copyright 1996    Lawrence C. Marsh

ANOVA  Table



Table 8.3   Analysis  of  Variance  Table                

                               Sum of         Mean

Source           DF    Squares        Square    F-Value  

Explained       2     11776.18     5888.09    158.828

Unexplained   49   1805.168         36.84

Total               51   13581.35         p-value :  0.0001

SST

R

2



 =

=

SSR



=

0.867


11776.18

13581.35


8.14

Copyright 1996    Lawrence C. Marsh

Nonsample Information

ln(y

t

) = 



β

1

 + 



β

ln(X



t2

)

 



β



ln(X

t3

)



 

β



ln(X


t4

)

 



+ e

t

A certain production process is known to be



Cobb-Douglas with constant returns to scale.

β



β



β

4  



= 1

where


β

4  


= (1 

 



β



 

β

3



)

ln(y




/X

t4

) = 



β



β

2

 ln(X



t2

/X

t4

)



 

β



ln(X


t3 

/X

t4

)



 

+ e


t

y

t



 = 

β

1



 + 

β



X

t2 


β



X

t3 


β



X

t4 


+ e

t

*



*

*

*



Run least squares on the transformed model.

Interpret coefficients same as in original model.

8.15


39

Copyright 1996    Lawrence C. Marsh

Collinear Variables

 The term “independent variable” means

 an explanatory variable is independent of 

 of the error term,  but not necessarily

 independent of other explanatory variables.

Since economists typically have no control

over the implicit “experimental design”,

explanatory variables tend to move

together which often makes sorting out

their separate influences rather problematic.

8.16


Copyright 1996    Lawrence C. Marsh

Effects of Collinearity

1. no least squares output when collinearity is exact.

2. large standard errors and wide confidence intervals. 

3. insignificant t-values even with high R

2

 and a 


significant F-value.

4. estimates sensitive to deletion or addition of a few 

observations or “insignificant” variables.

5. good “within-sample”(same proportions) but poor 

“out-of-sample”(different proportions) prediction.

A high degree of collinearity will produce:

8.17

Copyright 1996    Lawrence C. Marsh

Identifying Collinearity

Evidence of high collinearity include:

1.  a high pairwise correlation between two 

explanatory variables.

2.  a high R-squared when regressing one 

explanatory variable at a time on each of the 

remaining explanatory variables.

3.  a statistically significant F-value when the 

t-values are statistically insignificant.

4.  an R-squared that doesn’t fall by much when 

dropping any of the explanatory variables.

8.18

Copyright 1996    Lawrence C. Marsh

Mitigating Collinearity

Since high collinearity is not a violation of

any least squares assumption, but rather a 

lack of adequate information in the sample:

1.  collect more data with better information.

2.  impose economic restrictions as appropriate.

3.  impose statistical restrictions when justified.

4.  if all else fails at least point out that the poor 

model performance might be due to the 

collinearity problem (or it might not).

8.19


Copyright 1996    Lawrence C. Marsh

Prediction

Given a set of values for the explanatory

variables, (1  X

02

  X


03

), the best linear

unbiased predictor of y is given by:

y

t



  =  

β

1



  +  

β

2



X

t2  


β

3



X

t3

 + e



t

This predictor is 

unbiased

 in the sense

that the 

average value of the forecast

error is zero

.

y



0

  =  b


1

  +  b


2

X

02  



+ b

3

X



03

^

8.20



Copyright 1996    Lawrence C. Marsh

Extensions 

of the Multiple 

Regression Model

Chapter 9

Copyright © 1997 John Wiley & Sons, Inc.  All rights reserved.  Reproduction or translation of this work beyond 

that permitted in Section 117 of the 1976 United States Copyright Act without the express written permission of the 

copyright owner is unlawful.  Request for further information should be addressed to the Permissions Department, 

John Wiley & Sons, Inc.  The purchaser may make back-up copies for his/her own use only and not for distribution

 or resale.  The Publisher assumes no responsibility for errors, omissions, or damages, caused by the use of these 

programs or from the use of the information contained herein.

9.1


40

Copyright 1996    Lawrence C. Marsh

Topics for This Chapter

1.  Intercept Dummy Variables

2.  Slope Dummy Variables

3.  Different Intercepts & Slopes

4.  Testing Qualitative Effects

5.  Are Two Regressions Equal?

6.  Interaction Effects

7.  Dummy Dependent Variables

9.2


Copyright 1996    Lawrence C. Marsh

Intercept Dummy Variables

Dummy variables are binary (0,1)

D

t



 = 1 if 

red

 car, D


t

 = 0 otherwise.

y

t

  =  



β

1

  +  



β

2

X



t  

β



3

D



+  e

t

y



t

  =  


speed of car in miles per hour

X

t



  =  

age of car in years



Police:  

red

 cars travel faster

.

H

0



:  

β



= 0

H

1



:  

β



> 0

9.3


Copyright 1996    Lawrence C. Marsh

y

t



  =  

β

1



  +  

β

2



X

t  


β

3



D

+  e



t

red

 cars:   

y

t

  =  (



β

1

 + 



β

3

) +  



β

2

x



t  

+  e


t

 

other cars:   



y

t

  =  



β

1

 +  



β

2

X



t  

+  e


t

 

y



t

X

t



miles

per 


hour

age in years

0

β

1



 + 

β

3



β

1

β



2

β

2



red

 cars


other cars

9.4


Copyright 1996    Lawrence C. Marsh

Slope Dummy Variables

y

t

  =  



β

1

  +  



β

2

X



t  

β



3

D

t



X

+  e



t

y

t



  =  

β

1



 + (

β

2



 + 

β

3



)X

t  


+  e

t

 



y

t

  =  



β

1

 +  



β

2

X



t  

+  e


t

 

y



t

X

t



value

of

porfolio



years

0

β



2

 + 


β

3

β



1

β

2



stocks

bonds


 Stock portfolio: D

= 1   Bond portfolio: D



= 0


 

β

1



 = initial

 investment 

9.5

Copyright 1996    Lawrence C. Marsh

Different Intercepts & Slopes

y

t

  =  



β

1

  +  



β

2

X



t  

β



3

D

t



 

 



β

4

D



t

X



+  e

t

y



t

  =  (


β

1

 + 



β

3

) + (



β

2

 + 



β

4

)X



t  

+  e


t

y

t



  =  

β

1



 +  

β

2



X

t  


+  e

t

 



y

t

X



t

harvest


weight

of 


corn

rainfall


β

2

 + 



β

4

β



1

β

2



“miracle”

regular


 “miracle” seed: D

= 1      regular seed: D



= 0 


β

1

 + 



β

3

9.6



Copyright 1996    Lawrence C. Marsh

y

t



 = 

β

1



 + 

β

2



 X

t

 + 



β

3

 D



t

 

+ e



t

β

2



β

1



β

3

β



2

β

1



y

t

X



t

Men


Women

0

  y



t

  = 


β

1

 + 



β

2

 X



t

  + e


t

 For  


men

:

   



D

t

 



= 1.

 For  


women

:

 



 D

t

 = 0.



years of experience

y

t



  = (

β

1



β

3



) + 

β

2



 X

t

  + e



t

wage


rate

H

0



:

  

β



=

 0 



H

1

:

  

β



>

 0 


.

.

Testing for

discrimination

in starting wage

9.7


41

Copyright 1996    Lawrence C. Marsh

y

t



 = 

β

1



 + 

β

5



 

X

t



 + 

β

6



 

D

t



 X

t

 + e



t

β

5



β

+



 

β

6



β

1

y



t

X

t



Men

Women


0

  y


t

  =  


β

1

  + (



β

+



 

β

6



 

)X

t



  + e

t

  



y

t

 =  



β

1

  +  



β

5

 X



t

  + e


t

 For men  D

t

 = 1.


 For women  D

t

 = 0.



Men and women have the same  

starting  wage, 

β

1

 , but  their  wage rates



increase at different  rates  (diff.= 

β

6



 

).

 



β

>



 

 means that  men’s wage rates are



increasing  faster  than  women's wage rates.

years of experience

wage

rate


9.8

Copyright 1996    Lawrence C. Marsh

y

t



 = 

β

1



 + 

β

2



 X

t

 + 



β

3

 



D

t

 + 



β

4

 



D

t

 X



t

 + e


t

β

1



 + 

β

3



β

1

β



2

β

2



 + 

β

4



y

t

X



t

Men


Women

0

  



y

t

 = (



β

1

 + 



β

3

) + (



β

2

 + 



β

4

) X



t

 + e


t

  y


t

 = 


β

1

 + 



β

2

 X



t

 + e


t

Women are given a higher starting wage, 

β

1

 



,  

while men get the lower starting wage, 

β

1

 + 



β

,



(

β

3



 

0

 ).  But, men get a faster rate of increase



in their wages, 

β

2



 + 

β

4



 

, which is higher than the

rate of increase for women, 

β

2



 , (since 

β

4



 

0



 ).

years  of  experience

An  Ineffective  Affirmative  Action  Plan

women are started

at a higher wage.

Note:

(

β

3



 

0

 )



wage

rate


9.9

Copyright 1996    Lawrence C. Marsh

Testing Qualitative Effects

1.  Test for differences in 

intercept

.

2.  Test for differences in 



slope

.

3.  Test for differences in both     



intercept

 and 


slope

.

9.10



Copyright 1996    Lawrence C. Marsh

H

0



:  

β

3  



≤  0  

vs

. Η



1

:  


β

3  


>  0   

H

0



:  

β

4  



≤  0  

vs

. Η



1

:  


β

4  


>  0   

Y

t



 

= β 


1

+β  


2

X

t



+ β 

3

D



t

+ β 


4

D

t



X

t

b



  − 

3



Est.Var

b

 



3

˜

t



n

4



b

  

− 



4

Est.Var



b

 

4



˜

t

n



4

 men:  D



t

 = 1 ;  women:  D

t

  = 0 


Testing for

discrimination in

starting wage.

Testing for

discrimination in

wage increases.

intercept

slope


e

t



9.11

Copyright 1996    Lawrence C. Marsh

Testing


:

       H


o

:  


β

3  


=

 

β



4

 = 0   


 

H



:   otherwise  

and


SSE

R

=



(

y

t



b

1



b

2



X

t

)



2

t

=



1

T



SSE

U

= (



y

t



b

1



b

2

X



t

b



3

D

t



b

4



D

t

X



t

)

2



t

=

1



T

(



SSE

R



SSE



U

) /


2

SSE

U

/ (


T

4



)



F



T

4



2

intercept and slope

9.12

Copyright 1996    Lawrence C. Marsh

Are Two Regressions Equal?

y

t

 = 



β

1

 + 



β

2

 X



t

 + 


β

3

 



D

t

 + 



β

4

 



D

t

 X



t

 + e


t

 variations of “The Chow Test” 

I.  Assuming equal variances (pooling):

 men: 

D

t



 = 1 ;     women: 

D

t



 

 = 0 


H

o



β

3

 = 



β

4

 = 0     vs.   



H

1

: otherwise



y

t

 = wage rate



This model assumes equal wage rate variance.

X

t



 = years of experience

9.13


42

Copyright 1996    Lawrence C. Marsh

y

t



 = 

β

1



 + 

β

2



 X

t

 + e



t

II.  Allowing for unequal variances:

y

tm

 = 



δ

1

 + 



δ

2

 X



tm

 + e


tm

y

tw



 = 

γ

1



 + 

γ

2



 X

tw

 + e



tw

Everyone:

Men only:

Women only:

SSE

R

Forcing men and women to have same 



β

1



β

2

.



Allowing men and women to be different.

SSE


m

SSE


w

where  SSE

U  

=  SSE


+

 



SSE

w

F =



(SSE



 

SSE


U

)/J


SSE

/(T



K)

J = # restrictions



K=unrestricted coefs. 

(running three regressions)

J = 2      K = 4

9.14


Copyright 1996    Lawrence C. Marsh

Interaction Variables

  1.  Interaction Dummies

  2.  Polynomial Terms

  (special case of continuous interaction)

  3.  Interaction Among Continuous Variables

9.15

Copyright 1996    Lawrence C. Marsh

1.  Interaction Dummies

y

t

 = 



β

1

 + 



β

2

 X



t

 + 


β

3

 M



β



4

 B

t



 

+ e


t

 For  


men

:

   M



t

 

= 1.   For  



women

:

 



 

M

t



 = 0.

 For  


black

:

   



B

t

 



= 1.   For  

nonblack


:

  B


t

 

= 0.



No Interaction:  wage gap assumed the same:

y

t



 = 

β

1



 + 

β

2



 X

t

 + 



β

3

 M



β



4

 B



β

5



 M

B



t

 

+ e



t

Interaction:  wage gap depends on race:

Wage Gap between Men and Women

y

t



 = wage rate;  X

t

 = experience



9.16

Copyright 1996    Lawrence C. Marsh

2.  Polynomial Terms

y

t

 = 



β

1

 + 



β

2

 X



 

t

 + 



β

3

 



X

2

t



 

β



4

 X

3



t

 + e


t

Linear in parameters but nonlinear in variables:

y

t

 = income;  X



t

 = age


Polynomial Regression

y

t



X

 

t



People retire at different ages or not at all.

90

20



30

40

50



60

80

70



9.17

Copyright 1996    Lawrence C. Marsh

y

t



 = 

β

1



 + 

β

2



 X

 

t



 + 

β

3



 

X

2



t

 



β

4

 X



3

t

 + e



t

y

t



 = income;  X

t

 = age



Polynomial Regression

Rate income is changing as we age:

y

t



X

t



=   

β

2



 + 2 

β

3



 

X

 



t

  

+ 3 



β

X



2

t

Slope changes as 



X

 

t



 changes.

9.18


Copyright 1996    Lawrence C. Marsh

3. Continuous Interaction

y

t

 = 



β

1

 + 



β

2

 Z



β



3

 B



β

4



 Z

B



t

 

+ e



t

Exam grade = f(sleep:

Z



, study time:



B

t

)



Sleep and study time do not act independently.

 More study time will be more effective

 when combined with more sleep and less

 effective when combined with less sleep.

9.19


43

Copyright 1996    Lawrence C. Marsh

Your mind sorts

things out while

you sleep (when you have things to sort out.)

y

t

 = 



β

1

 + 



β

2

 Z



β



3

 B



β

4



 Z

B



t

 

+ e



t

Exam grade = f(sleep:

Z



, study time:



B

t

)



y

t



B

t



=   

β

2



 + 

β



Z

t

Your studying is 



more effective

with more sleep.

y

t



Z

t



=   

β

2



 + 

β



B

t

 continuous interaction 



9.20

Copyright 1996    Lawrence C. Marsh

y

t



 = 

β

1



 + 

β

2



 Z



β

3

 B



β



4

 Z



B

t

 



+ e

t

Exam grade = f(sleep:



Z

, study time:



B

t

)



If   

Z

t



 + 

B

t



 = 24 hours,  then 

B



= (24 

 



Z

t

)



y

t

 = 



β

1



β

2

 Z



+

β



3

(24 


 

Z



t

)

 



+

β

4



 Z

t

 (24 



 

Z



t

)

 



+ e

t

y



t

 = (


β

1

+



24

 

β



3

) + (


β

2

−β



3

+

24 



β

4

)



Z

t

 



 

β



4

Z

2



t

 

+ e



t

y

t



 = 

δ

1  



+  

δ

2



 

Z

t



  

 



δ

Z



2

t

  



+ e

t

Sleep needed to maximize your exam grade:



y

t



Z

t



δ

2



 + 2

δ



Z

t  


= 0

where 


δ

2

 > 0 



and

  

δ





< 0

− δ


2

3



Z

t  


=

9.21


Copyright 1996    Lawrence C. Marsh

1.   Linear Probability Model

2.   Probit Model

3.   Logit Model

Dummy Dependent Variables

9.22


Copyright 1996    Lawrence C. Marsh

Linear Probability Model

y

i

 = 



β

1

 + 



β

2

 X



i2

 + 


β

3

 



X

i3

 



β

4



 X

i4

 + e



i

X

i2  



total hours of work each week

 1   quits job

 0   does not quit

y

i

  



=

X

i3  



weekly paycheck

X

i4  


hourly pay 

(X

i3 


divided by 

X

i2



)

9.23


Copyright 1996    Lawrence C. Marsh

X

i2



y

i

 = 



β

1

 + 



β

2

 X



i2

 + 


β

3

 



X

i3

 



β

4



 X

i4

 + e



i

y



=

1

0



y

=



total hours of work each week

y

i



 = 

b

1



 + 

b

2



 X

i2

 + 



b

3

 



X

i3

 



b

4



 X

i4

^



y

i

^



Read predicted values of 

y

i



 off the regression line

:

Linear Probability Model



9.24

Copyright 1996    Lawrence C. Marsh

1.   Probability estimates are sometimes

less than zero or greater than one.

2.   Heteroskedasticity is present in that 

the model generates a nonconstant 

error variance.

Linear Probability Model

Problems with Linear Probability Model:

9.25


44

Copyright 1996    Lawrence C. Marsh

Probit Model

z

i

 = 



β

1

 + 



β

2

 X



i2 

. . .



 2

 

π



f(z

i

) =         e



0.5z


i

2

1



F(z

i

) = P[ Z 



≤ 

z



] =   

            e



0.5u


2

du

 2



 

π

1



Normal probability density function:

Normal cumulative probability function:

z

i

−∞



latent variable, 

z

i



 :

9.26


Copyright 1996    Lawrence C. Marsh

p

i



 = P[ Z 

≤ β


1

 + 


β

2

X



i2

 ] = F(


β

1

 + 



β

2

X



i2

Since



  z

i

 = 



β

1

 + 



β

2

 X



i2 

. . .



 

, we can


substitute in to get

:

   



Probit Model   

X

i2



total hours of work each week

y



=

1

0



y

=



9.27

Copyright 1996    Lawrence C. Marsh

Logit Model

p

i   


=

1

1  



+

  



− 

(

β



1

 + 


β

2

 X



i2

 



. . 

.)

Define  p



i

 :

For 

 

β



2

 > 0


,  p

i   


will approach 1 as X

i2             

+



 



p

i   


is the probability of quitting the job.

For 


 

β

2



 > 0

,  p


i   

will approach 0 as X

i2             



 

9.28


Copyright 1996    Lawrence C. Marsh

   


Logit Model   

X

i2



total hours of work each week

y



=

1

0



y

=



p

i   


=

1

1  



+

  



− 

(

β



1

 + 


β

2

 X



i2

 



. . 

.)

p



i   

is the probability of quitting the job.

9.29

Copyright 1996    Lawrence C. Marsh

Maximum Likelihood

Maximum likelihood estimation (MLE)

is used to estimate Probit and Logit functions.

 The small sample properties of MLE 

 are not known, but in large samples

 MLE is normally  distributed, and it is

 consistent and asymptotically efficient .

9.30

Copyright 1996    Lawrence C. Marsh

Heteroskedasticity

Chapter 10

Copyright © 1997 John Wiley & Sons, Inc.  All rights reserved.  Reproduction or translation of this work beyond 

that permitted in Section 117 of the 1976 United States Copyright Act without the express written permission of the 

copyright owner is unlawful.  Request for further information should be addressed to the Permissions Department, 

John Wiley & Sons, Inc.  The purchaser may make back-up copies for his/her own use only and not for distribution

 or resale.  The Publisher assumes no responsibility for errors, omissions, or damages, caused by the use of these 

programs or from the use of the information contained herein.

10.1


45

Copyright 1996    Lawrence C. Marsh

The Nature of Heteroskedasticity



Heteroskedasticity

 is a systematic  pattern in 

the errors where the variances of the errors 

are not constant. 

Ordinary least squares assumes that all 

observations are 



equally reliable

.

For 



efficiency

 (accurate estimation/prediction) 

reweight observations to ensure equal error 

variance.

10.2

Copyright 1996    Lawrence C. Marsh

y

t



  =  

β

1



  +  

β

2



x

t   


+  e

t

Regression Model



E(e

t

) = 0



var(e

t

) = 



σ

 

2



zero mean:

homoskedasticity:

nonautocorrelation:

cov(e


t

, e


s

) = 


0    

t

 



 

s



heteroskedasticity:

var(e


t

) = 


σ

t

 



2

10.3


Copyright 1996    Lawrence C. Marsh

Homoskedastic pattern of errors

x

t

y



t

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.. . .

.

.

. .

. .

..

.

.

.

.

.

.

.

.

income


consumption

10.4


Copyright 1996    Lawrence C. Marsh

.

.

x

t



x

1

x



2

y

t



f(y

t

)



The Homoskedastic Case

.

.

x

3



x

4

income



consumption

10.5


Copyright 1996    Lawrence C. Marsh

Heteroskedastic pattern of errors

x

t

y



t

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

income


consumption

10.6


Copyright 1996    Lawrence C. Marsh

.

x

 



t

x

1



x

2

y



t

f(y


t

)

consumption



x

3

.



.

The Heteroskedastic Case

income

rich people



poor people

10.7


46

Copyright 1996    Lawrence C. Marsh

Properties of Least Squares

1.  Least squares still 

linear

 and 


unbiased

.

2.  Least squares 



not efficient

.

3.  Usual formulas give 



incorrect

 standard      

errors for least squares.

4.  Confidence intervals and hypothesis tests 

based on usual standard errors are 

wrong

.

10.8



Copyright 1996    Lawrence C. Marsh

y

t



  =  

β

1



  +  

β

2



x

t   


+  e

t

heteroskedasticity:



var(e

t

) = 



σ

t

 



2

incorrect formula for least squares variance:

var(b

2

) = 



σ

2

Σ (



x

− 



x

 

)



2

correct formula for least squares variance:

var(b

2

) = 



Σ 

σ

t



 

2

(



x

− 



x

 

)



2

[Σ (


x

− 



x

 

)



2

]

2



10.9

Copyright 1996    Lawrence C. Marsh

Hal White’s Standard Errors

White’s estimator of the least squares variance:

est.var(b

2

) = 


Σ 

e

t



 

2

(



x

− 



x

 

)



2

[Σ (


x

− 



x

 

)



2

]

2



^

In large samples White’s standard error 

(square root of estimated variance) is a

correct accurate consistent measure.

10.10

Copyright 1996    Lawrence C. Marsh

Two Types of Heteroskedasticity

1.   

Proportional

 Heteroskedasticity.

    (

continuous



 function(of x

t

, for example))



2.  


Download 0.54 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   ...   13




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling