Copyright 1996 Lawrence C. Marsh 0 PowerPoint Slides for Undergraduate Econometrics by


Download 0.54 Mb.
Pdf ko'rish
bet10/13
Sana04.11.2020
Hajmi0.54 Mb.
#140982
1   ...   5   6   7   8   9   10   11   12   13
Bog'liq
allChap6

partial derivatives:   f’(X

t

,b

(ο)


)  and  y  is replaced by  y

(ο)



(i.e.  “y” = y*

(ο)


   and  “X” =  

f’(X,b

(ο)


)   

)

14.12


Copyright 1996    Lawrence C. Marsh

Recall that:   y

*

(o)

   

≡   


y

 −   


f(X,b

(o)

)  +  f’(X,b

(ο)


) b

(ο) 


Now define:   y

∗∗

(ο)



   



   y 



   f(X,b

(o)

)

Therefore:     y

(ο)



  

  =     y

∗∗

(ο)



    +    f’(X,b

(ο)


) b

(ο) 


 = 


[

 f’(X,b

(ο)


)



f’(X,b

(ο)


)

]

-1 

f’(X,b

(ο)


)



y

(ο)



^

Now substitute in for y

∗  


in Gauss-Newton solution:

to get:

b   =   b

(o)   

+  

 

[



 f’(X,b

(ο)


)



f’(X,b

(ο)


)

]

-1 

f’(X,b

(ο)


)



y

∗∗

(ο)



^

14.13


Copyright 1996    Lawrence C. Marsh

b   =   b

(o)   

+  

 

[

 f’(X,b

(ο)


)



f’(X,b

(ο)


)

]

-1 

f’(X,b

(ο)


)



y

∗∗

(ο)



^

b

(1)

   =   b

(ο)   


+  

 

[



 f’(X,b

(ο)


)



f’(X,b

(ο)


)

]

-1 

f’(X,b

(ο)


)



y

∗∗

(ο)



Now call this  b   value   b

(1)   


as follows:

^

More generally,   in  going  from  interation  m  to

iteration  (m+1)  we obtain the general expression:

b

(m+1)

   =   b

(m)   

+  

 

[



 f’(X,b

(m

)

)





f’(X,b

(m

)

)



]

-1 

f’(X,b

(m

)

)





y

∗∗

(m)

14.14

Copyright 1996    Lawrence C. Marsh

b

(m+1)

  = 

[

 f’(X,b

(m

)

)





f’(X,b

(m

)

)



]

-1 

f’(X,b

(m)

)



y

*

(m)

b

(m+1)

   =   b

(m)   

+  

 

[



 f’(X,b

(m)

)



f’(X,b

(m)

)

]

-1 

f’(X,b

(m)

)



y

∗∗

(m)



Thus, the Gauss-Newton (nonlinear OLS) solution

can be expressed in two alternative, but equivalent,

forms:

1. replacement form :

2. updating form:

14.15


Copyright 1996    Lawrence C. Marsh

For example, consider 

Durbin’s Method 

of estimating

the autocorrelation coefficient under a first-order 

autoregression regime:



t

  =  b

1  

+  b

2

 

X





2

 

+ . . . + b

K

 X



K

 +  

ε

 



t

   

 

 for  t = 1, . . . , n.

ε

 

t

  = 

ρ 

ε



 

t - 1

  + u

t      

where  u 

t  

 satisfies the conditions

     E u 

t  

 = 0 

,

    E u 

2

t  

 =  s

u

2

,    

E u 







 = 0  for   s 



 t.



Therefore, u 

t  

is nonautocorrelated and homoskedastic.

Durbin’s Method 

is to set aside a copy of the equation,

lag it once, multiply by 

ρ

  and subtract the new equation



from the original equation, then move the  

ρ

y



t-1

  term to 

the right side and estimate  

ρ 

along with the b





 by OLS.

14.16


Copyright 1996    Lawrence C. Marsh

Durbin’s Method 

is to set aside a copy of the equation,

lag it once, multiply by 

ρ

  and subtract the new equation



from the original equation, then move the  

ρ

y



t-1

  term to 

the right side and estimate  

ρ 

along with the b’s by OLS.





t

  =  b

1  

+  b

2

 

X

 



2

 

+  b

3

 X 



3

 +  

ε

 



t

   

 

 for  t = 1, . . . , n.



where

  

ε

t



  = 

ρ 

ε



t - 1

  + u

ρ 



t-1

  =  

ρ 

b



1  

+  

ρ 

b



2

 

X



t -1, 

2

 

ρ 

b



3

 X

t -1, 

3

 +  

ρ 

ε



t -1

Lag once and multiply by 

ρ:

Subtract from the original and move  

ρ 



t-1

  to right side:

y

t

 = b

1

(1

-

ρ

)

  



+  b

2

(

X







ρ

X



t-1, 

2

)

  



+  b

3

(X



− ρ


X

t-1, 

3

)+ 

ρ



t-1

+ u

14.17


62

Copyright 1996    Lawrence C. Marsh

y

t

 = b

1

(1

-

ρ

)

 



+ b

2

(

X







ρ

X



t-1, 

2

)

 



+ b

3

(X





-

 ρ

X



t-1, 

3

) + 

ρ



t-1

+ u



Now Durbin separates out the terms as follows:

y

t

 = b

1

(1

-

ρ

)

  



+  b

2

X







b

2

ρ

X



t-1 

2

  

+  b

3

X







b

3

ρ

X



t-1 

3

ρ



t-1

+ u



The structural  (restricted,behavorial) equation is:

The corresponding reduced form  (unrestricted) equation is:

y

t

 = 

α

1

  

+  

α

2



X

t

,

 



2  

+  

α

3



X

t-1



2  



 

+   

α

4



X

t

,

 



3   

α

5



X

t-1





+  

α

6



y

t-1

+ u 

α



= b

1

(1

-

ρ

) α




= b

2

α

3



= - b

2

ρ  


α



= b

3

 

α



5

= - b

3

ρ

α



6

ρ

14.18



Copyright 1996    Lawrence C. Marsh

Given   OLS  estimates: 

α

1    

α

2   

α

3   

α

4   

α

5  

α

6

^

^

^

^

^

^

we can get three separate and distinct estimates for 

ρ :


ρ = − α

3

α



2

^

^



^

ρ =


− α

5

α



4

^

^



^

ρ = α


6

 

^



^

These three separate estimates of 

ρ 

are in conflict !!!



It is difficult to know which one to use as “the”

legitimate estimate of 

ρ.  


Durbin used the last one.

α



= b

1

(1

-

ρ

) α




= b

2

α

3



= - b

2

ρ  


α



= b

3

 

α



5

= - b

3

ρ

α



6

ρ

14.19



Copyright 1996    Lawrence C. Marsh

The problem with 

Durbin’s Method 

is that it ignores

the inherent nonlinear restrictions implied by this 

structural model.    To get a single (i.e. unique) estimate

for  

ρ  


the implied nonlinear restrictions must be 

incorporated directly into the estimation process.

Consequently, the above structural equation should be

estimated using a nonlinear method such as the

Gauss-Newton

 algorithm for nonlinear least squares.

y

t

 = b

1

(1

-

ρ

)

  



+  b

2

X







b

2

ρ

X



t -1, 

2

  

+  b

3

X







b

3

ρ

X



t -1, 

3

ρ

y



t-1

+ u

14.20


Copyright 1996    Lawrence C. Marsh

y

t

 = b

1

(1

-

ρ

)

  



+  b

2

X







b

2

ρ

X



t-1, 

2

  

+  b

3

X







b

3

ρ

X



t-1, 

3

ρ

y



t-1

+ u

f’(X


t

,b)  


 =   

[

                                          

]

∂ 

y



t

∂ρ



(1 

− ρ


)

=

 (



t, 


−  ρ 


t-1


,

2

)



=

 (



t, 

−  ρ 



t-1


,

3

)



∂ 

y

t



∂ρ

= ( - b

1

 

-

 

b

2

X

t-1,





b

3

X

t-1,

3

+ y 

t-1 

)

∂ 

y



t

b



1

∂ 

y



t

b



2

∂ 

y



t

b



3

∂ 

y



t

b



1

∂ 

y



t

b



2

∂ 

y



t

b



3

14.21


Copyright 1996    Lawrence C. Marsh

where  y

t



(m)



   

≡   


y

t

  -   f(X

t

,b

(

m

)

)  +  f’(X

t

,b

(m

)

) b



(m

β



(m+1)

  = 

[

 f’(X,b

(

m

)

)



f’(X,b

(

m

)

)

]

-1 

f’(X,b

(m

)

)





y



(m

)

^

f(X

t

,b) = b

1

(1

-

ρ

)

  



+  b

2

X







b

2

ρ

X



t-1 

2

  

+  b

3

X







b

3

ρ

X



t-1 

3

ρ



t-1

 

b



(m) 

 =

 

 



b

 1(m)


 

ρ

(m)



b

2(m)


b

3(m)


 Iterate until convergence.

f’(X


t

,b

(



m

)

)  =



  

[

                                           

]

∂ 

y



t

∂ρ

 (m)



∂ 

y

t



b

1(m)



∂ 

y

t



b

2(m)



∂ 

y

t



b

3



(m)

14.22


Copyright 1996    Lawrence C. Marsh

 Distributed 

Lag Models

Chapter 15

Copyright © 1997 John Wiley & Sons, Inc.  All rights reserved.  Reproduction or translation of this work beyond 

that permitted in Section 117 of the 1976 United States Copyright Act without the express written permission of the 

copyright owner is unlawful.  Request for further information should be addressed to the Permissions Department, 

John Wiley & Sons, Inc.  The purchaser may make back-up copies for his/her own use only and not for distribution

 or resale.  The Publisher assumes no responsibility for errors, omissions, or damages, caused by the use of these 

programs or from the use of the information contained herein.

15.1


63

Copyright 1996    Lawrence C. Marsh

The Distributed Lag Effect

Economic action

at time t

Effect

   at time t   



Effect

 at time t+1 

Effect

 at time t+2 



15.2

Copyright 1996    Lawrence C. Marsh

Unstructured Lags

y

t

  =  



α

  +  


β

0

 x



t

 + 


β

1

 x



t-1

 + 


β

2

 x



t-2

 + . . . +

 β

n

 x



t-n

 + e


t

“n”  unstructured  lags

no  systematic  structure  imposed  on  the  

β

’s



the  

β

’s  are  unrestricted



15.3

Copyright 1996    Lawrence C. Marsh

Problems with Unstructured Lags

1.   n  observations are lost  with n-lag setup.

2.   high degree of multicollinearity among x

t-j

’s.


3.   many degrees of freedom used for large n.

4.   could get greater precision using structure.

15.4

Copyright 1996    Lawrence C. Marsh

The Arithmetic Lag Structure

proposed by Irving Fisher (1937)

the lag weights decline linearly

    Imposing the relationship:

β

#



   =  (n - # + 1)  

γ

β



0

   =  (n+1) 

γ

β

1



   =        n 

γ

β



2

   =  (n-1) 

γ

β

3



   =  (n-2) 

γ

       .



       .

β

n-2



 =       3 

γ

β



n-1

 =       2 

γ

β

n



   =          

γ

only need to estimate one coefficient, 



γ 

,

instead of n+1 coefficients, 



β

0

 , ... , 



β

.



15.5


Download 0.54 Mb.

Do'stlaringiz bilan baham:
1   ...   5   6   7   8   9   10   11   12   13




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling