Copyright 1996 Lawrence C. Marsh 0 PowerPoint Slides for Undergraduate Econometrics by


Copyright 1996    Lawrence C. Marsh


Download 0.54 Mb.
Pdf ko'rish
bet12/13
Sana04.11.2020
Hajmi0.54 Mb.
#140982
1   ...   5   6   7   8   9   10   11   12   13
Bog'liq
allChap6


Copyright 1996    Lawrence C. Marsh

Adaptive Expectations

y

t

 = 



α

λ

 - 



(

1



 

λ

)



y

t-1


β

 [x*



t  

(



1

 



λ

)

x*



t-1

]

                                         +  e



(



1

 



λ

)

e



t-1

 

Since



    

 

λ



 x

t-1   


=    [x*

  -  (1- 



λ

) x*


t-1

]

 we get:



y

t

 = 



α

λ

 - 



(

1



 

λ

)



y

t-1


βλ

x



t-1

 + 


 

u

t



where  

u



=  e



(

1



 

λ

)



e

t-1


15.28

Copyright 1996    Lawrence C. Marsh

Adaptive Expectations

y

t

 = 



α

λ

 - 



(

1



 

λ

)



y

t-1


βλ

x



t-1

 + 


 

u

t



y

t

 = 



β

1

 + 



β

2

y



t-1

β



3

x

t-1



 + 

 

u



t

Use ordinary least squares regression on:

and we get:

β 

=



(

1



 

β

2



)

 

β



3

 

^



^

 

^



λ

 = (


1

 



β

2

)



 

^

^



α 

=

(



1

 



β

2

)



 

β

1



 

^

 



^

 

^



15.29

Copyright 1996    Lawrence C. Marsh

Partial Adjustment

y



- y



t-1

   =  


γ

 (y*


t

 - y


t-1

inventories partially adjust ,  0 < 



γ 

< 1,

towards optimal or desired level, 

y*



:



y*

t

   =   



α

  +  


β

 x

t



  +  e

t

 



15.30

Copyright 1996    Lawrence C. Marsh

Partial Adjustment

y



- y



t-1

   =  


γ

 (y*


t

 - y


t-1

   =  



γ

 (

α



 + 

β

x



t

 + e


- y


t-1

)

   =  



γ

α

 + 



γβ

x

t



 

 



γ

y

t-1



γ

e



t

 

y



=  


γ

α

  + (1



 

γ)



y

t-1 


+  

γβ

x



t

  +  


γ

e

t



 

Solving for 

y



:



15.31

68

Copyright 1996    Lawrence C. Marsh

Partial Adjustment

y



=  



γ

α

  + (1



 

γ)



y

t-1 


+  

γβ

x



t

  +  


γ

e

t



 

y

t



 = 

β

1



 + 

β

2



y

t-1


β

3



x

t

 + 



 

ν

t



β 

=

(



1

 



β

2

)



 

β

3



^

^

 



^

γ

 = (



1

 



β

2

)



 

^

^



α 

=

(



1

 



β

2

)



 

β

1



^

^

 



^

Use ordinary least squares regression to get:

15.32

Copyright 1996    Lawrence C. Marsh

Time

  Series 

 Analysis

Chapter 16

Copyright © 1997 John Wiley & Sons, Inc.  All rights reserved.  Reproduction or translation of this work beyond 

that permitted in Section 117 of the 1976 United States Copyright Act without the express written permission of the 

copyright owner is unlawful.  Request for further information should be addressed to the Permissions Department, 

John Wiley & Sons, Inc.  The purchaser may make back-up copies for his/her own use only and not for distribution

 or resale.  The Publisher assumes no responsibility for errors, omissions, or damages, caused by the use of these 

programs or from the use of the information contained herein.

16.1


Copyright 1996    Lawrence C. Marsh

 Previous Chapters used Economic Models 

1. economic model for dependent variable of interest.

2. statistical model consistent with the data.

3. estimation procedure for parameters using the data.

4. forecast variable of interest using estimated model.

Times Series Analysis does not  use this approach.

16.2

Copyright 1996    Lawrence C. Marsh

Time Series Analysis is useful for  

short term   

forecasting only.

Time Series Analysis does not generally

incorporate all of the economic relationships 

found in economic models.

Times Series Analysis uses 

more statistics 

and 


less economics

.

Long term 



forecasting requires incorporating more involved

behavioral economic relationships into the analysis.

16.3

Copyright 1996    Lawrence C. Marsh

Univariate Time Series Analysis 

can be used 

to relate the current values of a single economic

variable to:

1.  its past values

2.  the values of current and past random errors

Other variables are not used 

in univariate time series analysis.

16.4


Copyright 1996    Lawrence C. Marsh

1. autoregressive (AR)

2. moving average (MA)

3. autoregressive moving average (ARMA)

Three

 types of 



Univariate Time Series Analysis

processes will be discussed in this chapter:

16.5


69

Copyright 1996    Lawrence C. Marsh

1.  its past values

.

2.  the past values of the other forecasted variables



.

3.  the values of current and past random errors

.

Multivariate



 

Time Series Analysis 

can be 

used to relate the current value of each of  



several economic variables to:

Vector autoregressive models discussed later in

this chapter are multivariate time series models.

16.6


Copyright 1996    Lawrence C. Marsh

First-Order Autoregressive Processes, AR(1):

y

t  


=  

δ 



θ

1

y



t-1

+ e


t

,

      t = 1, 2,...,T



.      

(16.1.1)


δ

  is the intercept.

θ

1

  is parameter generally between -1 and +1.



e

t

  is an uncorrelated random error with



                    mean zero and variance 

σ

e



.

16.7



Copyright 1996    Lawrence C. Marsh

Autoregressive Process of order p,  AR(p) :

y

t  


=  

δ 



θ

1

y



t-1 

θ



2

y

t-2 



+...+ 

θ

p



y

t-p 


+ e

t

     



(16.1.2)

δ

  is the intercept.



θ

i

’s  are parameters generally between -1 and +1.



e

t

  is an uncorrelated random error with



                    mean zero and variance 

σ

e



.

16.8



Copyright 1996    Lawrence C. Marsh

AR models always have one or more lagged 

   dependent variables on the right hand side.

Consequently, least squares is no longer a

best linear unbiased estimator (

BLUE


), 

but it does have some good asymptotic 

properties including 

consistency

.

 Properties of least squares estimator: 

16.9


Copyright 1996    Lawrence C. Marsh

AR(2) model of U.S. unemployment rates

y

t

  =  0.5051 + 1.5537 y



t-1

  

-



  0.6515 y

t-2


         (0.1267)     (0.0707)           (0.0708)

Note:  Q1-1948 through Q1-1978 from J.D.Cryer (1986) see unempl.dat

positive

negative


16.10

Copyright 1996    Lawrence C. Marsh

Choosing the lag length, p, for AR(p):

The Partial Autocorrelation Function (PAF)

The PAF is the sequence of correlations between

(y

t

 and y



t-1

),  (y


t

 and y


t-2

),  (y


t

 and y


t-3

),  and so on,

given that the effects of earlier lags on y

t

 are 



held constant.

16.11


70

Copyright 1996    Lawrence C. Marsh

 Partial Autocorrelation Function

y

t

  =  0.5 y



t-1

  

+



  0.3 y

t-2  


+  

e

t



 

0



/ 

  T


 2 


/ 

  T


1

1



k

θ

kk



 is the last (k

th

) coefficient



  in a k

th

 order AR process.



 This sample PAF suggests a second 

 order process AR(2) which is correct. 

Data simulated

from this model:

θ

kk

^



16.12

Copyright 1996    Lawrence C. Marsh

Using  AR Model  for Forecasting:

unemployment rate:    y

T-1


 = 6.63   and   y

T

 = 6.20



y

T+1


  =  

δ

  + 



θ

1

 y



T

 + 


θ

2

 y



T-1   

              

=    0.5051 + (1.5537)(6.2) 

-

 (0.6515)(6.63)



         =    5.8186

^

^



^

^

y



T+2

  =  


δ

  + 


θ

1

 y



T+1

 + 


θ

2

 y



T  

              

=    0.5051 + (1.5537)(5.8186) 

-

 (0.6515)(6.2)



         =    5.5062

^

^



^

^

y



T+1

  =  


δ

  + 


θ

1

 y



T

 + 


θ

2

 y



T-1  

              

=    0.5051 + (1.5537)(5.5062) 

-

 (0.6515)(5.8186)



         =    5.2693

^

^



^

^

16.13



Copyright 1996    Lawrence C. Marsh

Moving Average Process of order q,  MA(q):

y

t  


=  

µ 

+ e



t

 + 


α

1

e



t-1 

α



2

e

t-2 



+...+ 

α

q



e

t-q 


+ e

t

     



(16.2.1)

µ

  is the intercept.



α

i

‘s are unknown parameters.



e

t

  is an uncorrelated random error with



                    mean zero and variance 

σ

e



.

16.14



Copyright 1996    Lawrence C. Marsh

An MA(1) process:

y

t  


=  

µ 

+ e



t

 + 


α

1

e



t-1 

                  

(16.2.2)

Minimize sum of least squares deviations:

S(

µ

,



α

1

)  =  



Σ

 e



 =  

Σ(

y



t

  



µ

 

-



 α

1

e



t-1

)            (16.2.3)



2

t=1

T

t=1

T

2

16.15


Copyright 1996    Lawrence C. Marsh

stationary

:

A stationary time series is one whose mean, variance,



and autocorrelation function do not change over time.

nonstationary

:

A nonstationary time series is one whose mean,



variance or autocorrelation function change over time.

 Stationary vs. Nonstationary 

16.16

Copyright 1996    Lawrence C. Marsh

y

t  



=  z

 



- z

 

t-1



First Differencing is often used to transform

a nonstationary series into a stationary series:

where 

z

 



t  

is the original nonstationary series

and  

y

t



  is the new stationary series.

16.17


71

Copyright 1996    Lawrence C. Marsh

Choosing the lag length, q, for MA(q):

The Autocorrelation Function (AF)

The AF is the sequence of correlations between

(y

t

 and y



t-1

),  (y


t

 and y


t-2

),  (y


t

 and y


t-3

),  and so on,

without holding the effects of earlier lags 

on y


t

 constant.

The PAF controlled for the effects of previous lags

but the AF does not control for such effects.

16.18

Copyright 1996    Lawrence C. Marsh

Autocorrelation Function

y

t

   =  e



t

  



  

0.9 e


t-1

0



/ 

  T


 2 


/ 

  T


1

1



k

r

kk



r

kk

 is the last (k



th

) coefficient

  in a k

th

 order MA process.



 This sample AF suggests a first order 

  process MA(1) which is correct. 

Data simulated

from this model:

16.19

Copyright 1996    Lawrence C. Marsh

Autoregressive Moving Average

ARMA(p,q)

An ARMA(1,2) has one autoregressive lag

and two moving average lags:

y

t  



=  

δ  


θ

1



y

t-1 


+ e

t  


α

1



e

t-1  


α



e

t-2


16.20

Copyright 1996    Lawrence C. Marsh

Integrated  Processes

A time series with an upward or downward

trend over time is nonstationary.

Many nonstationary time series can be made 

stationary by differencing them one or more times.

Such time series are called 

integrated

 processes.

16.21


Copyright 1996    Lawrence C. Marsh

The number of times a series must be 

differenced to make it stationary is the

order of the integrated process, d.

An autocorrelation function, AF, 

with large, significant autocorrelations

for many lags may require more than

one differencing to become stationary.

Check the new AF after each differencing

to determine if further differencing is needed.

16.22

Copyright 1996    Lawrence C. Marsh

 Unit Root 

z

t  


=  

θ

1



z

t-1 


+  

µ 

+ e



t  

α



1

e

t -1         



(16.3.2)

-1 < 


θ



< 1                 

stationary ARMA(1,1)

θ



= 1                   

nonstationary process

θ



= 1  is called a 



unit root

16.23


72

Copyright 1996    Lawrence C. Marsh

Unit Root Tests

z

t  



=  

θ

1



z

t-1 


+  

µ 

+ e



t  

α



1

e

t -1         



(16.3.3)

Testing


 θ

= 0 is equivalent to testing 



θ

= 1



z

-



 

z

t-1 



=  

(

θ



1

-

 



1)

z

t -1 



+  

µ 

+ e



t  

α



1

e

t -1



*

where   


z



= z

-



 

z

t-1    



and   

θ

1



 

θ



1

-

 



1

 

*



*

16.24


Copyright 1996    Lawrence C. Marsh

Unit Root Tests

H

0

:



 θ

= 0     vs.     H



1

:

 θ





< 0       

(16.3.4)


*

*

Computer programs typically use one of 

the following tests for unit roots:

Dickey-Fuller Test

Phillips-Perron Test

16.25


Copyright 1996    Lawrence C. Marsh

 Autoregressive Integrated Moving Average 



ARIMA(p,d,q)

An ARIMA(p,d,q) model represents an 

AR(p) - MA(q) process that has been 

differenced (integrated, I(d)) d times.

y

t  


δ 



θ

1

y



t-1 

+...+ 


θ

p

y



t-p 

+ e


α



1

e

t-1 



+... + 

α



e

t-q


16.26

Copyright 1996    Lawrence C. Marsh

The Box-Jenkins approach:

1.   Identification

determining the values of  p, d, and q.

2.   Estimation

linear or nonlinear least squares.

3.   Diagnostic Checking

model fits well with no autocorrelation?

4.   Forecasting

short-term forecasts of future y

t

 values.


16.27

Copyright 1996    Lawrence C. Marsh

Vector Autoregressive (VAR) Models

y

t  


θ

0



 

θ



1

y

t-1 



+...+ 

θ

p



y

t-p 


φ

1



x

t-1 


+... + 

φ



x

t-p 


+ e

x



t  

δ



0

 



δ

1

y



t-1 

+...+ 


δ

p

y



t-p 

α



1

x

t-1 



+... + 

α



x

t-p 


+ u

Use VAR for two or more interrelated time series:



16.28

Copyright 1996    Lawrence C. Marsh

1.   extension of AR model

.

2.   all variables endogenous



.

3.   no structural (behavioral) economic model

.

4.   all variables jointly determined 



(over time).

5.   no simultaneous equations 

(same time).

Vector Autoregressive (VAR) Models

16.29


73

Copyright 1996    Lawrence C. Marsh

The random error terms in a VAR model

may be 

correlated



 if they are affected by

relevant factors that are not in the model

such as government actions or 

national/international events, etc.  

Since VAR equations all have exactly the 

same set of explanatory variables, the usual

seemingly unrelation regression 

estimation

produces exactly the same estimates as

least squares on each equation separately. 

16.30

Copyright 1996    Lawrence C. Marsh

Consequently,  regardless of whether

the VAR random error terms are

correlated or not,  least squares estimation

of each equation separately will provide

consistent

 regression coefficient estimates.

Least Squares is Consistent

16.31

Copyright 1996    Lawrence C. Marsh

VAR  Model  Specification

To determine length of the lag, p, use:

2.  Schwarz’s SIC criterion

1.  Akaike’s AIC criterion

These methods were discussed in Chapter 15.

16.32

Copyright 1996    Lawrence C. Marsh

  Spurious  Regressions  

y

t  


=  

β

1



 

β



x

t   



ε

t



where   

ε

t



 =  

θ

1



 

ε

t-1



 + 

ν

t



 

-1 <


 θ



< 1                 

I(0)   (i.e. d=0)

θ



= 1                 

I(1)   (i.e.  d=1)

If  

θ



=1  least squares estimates of  

β

2



  may

appear highly significant even when true 

β

2

 = 0 . 



16.33


Download 0.54 Mb.

Do'stlaringiz bilan baham:
1   ...   5   6   7   8   9   10   11   12   13




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling