Дифференциальные уравнения первого порядка
Download 37.2 Kb.
|
Дифференциальное уравнение Бернулли
Дифференциальное уравнение Бернулли. Примеры решений Предпраздничные новогодние дни предвещают зачеты и экзамены, поэтому в срочном порядке я решил порадовать читателей еще одним уроком по теме Дифференциальные уравнения первого порядка. Речь пойдет о так называемых уравнениях Бернулли, которые нет-нет, да и встречаются в практических работах и контрольных заданиях. Уравнение Бернулли рекомендую изучать только в том случае, если у вас уже есть опыт решения дифференциальных уравнений первого порядка, в особенности, следует хорошо ориентироваться в линейных неоднородных уравнениях вида . Дифференциальное уравнение Бернулли имеет вид: Очевидно – уравнение Бернулли по общей структуре напоминает линейное неоднородное уравнение первого порядка. Характерным признаком, по которому можно определить уравнения Бернулли, является наличие функции «игрек» в степени «эн»: . Если или , то уравнение Бернулли превращается в уравнения, которые вы уже должны уметь решать. Целая степень может быть как положительной, так и отрицательной (во втором случае получится дробь), кроме того, может быть обыкновенной дробью, например . Как и линейное неоднородное уравнение первого порядка, уравнение Бернулли может приходить на новогодний утренник в разных костюмах. Волком: Зайчиком: Или белочкой: Важно, чтобы в уравнении присутствовал персонаж , который, как я только что показал, иногда может маскироваться под корень. Обратите внимание, что одним из очевидных решений уравнения Бернулли (если ) является решение: . Действительно, если найти и подставить в уравнения рассмотренных типов, то получится верное равенство. Как отмечалось в статье об однородных уравнениях, если по условию требуется найти только частное решение, то функция по понятной причине нас не морозит, но вот когда требуется найти общее решение/интеграл, то необходимо проследить, чтобы эту функцию не потерять! Все популярные разновидности уравнения Бернулли я принёс в большом мешке с подарками и приступаю к раздаче. Развешивайте носки под ёлкой. Пример 1 Найти частное решение дифференциального уравнения, соответствующее заданному начальному условию. , Наверное, многие удивились, что первый подарок сразу же извлечён из мешка вместе с задачей Коши. Это не случайность. Когда для решения предложено уравнение Бернулли, почему-то очень часто требуется найти частное решение. По своей коллекции я провёл случайную выборку из 10 уравнений Бернулли, и общее решение (без частного решения) нужно найти всего в двух уравнениях. Но, собственно, это мелочь, поскольку общее решение придётся искать в любом случае. Решение: Данный диффур имеет вид , а значит, является уравнением Бернулли Как решить дифференциальное уравнение Бернулли? Алгоритм достаточно прост и незамысловат. На первом шаге необходимо избавиться от «игрека» в правой части. Для этого сбрасываем в низ левой части и проводим почленное деление: Далее необходимо избавиться от игрека вот в этом слагаемом: Для этого проводим замену: , то есть меняем дробь с «игреком» на букву «зет». Находим производную: . Если данное действие не понятно, пожалуйста, посмотрите первый параграф урока Производные неявной и параметрически заданной функций. Смотрим на первое слагаемое: Получено линейное неоднородное уравнение первого порядка. С той лишь разницей, что вместо привычного «игрека» у нас буква «зет». Вывод: уравнение Бернулли с помощью замены сводится к линейному неоднородному уравнению первого порядка Я сменю у каждого слагаемого знак, делать это не обязательно, просто запись будет выглядеть стандартнее что ли: Дальше алгоритм работает по накатанной колее, важно только уметь решать неоднородное уравнение 1-го порядка: Проведем замену: Подобные интегралы я ласково называю дурными интегралами, они не столько сложные, сколько творческие – нужно догадаться (хотя бы научным тыком), как их решать. Данный интеграл берётся по частям: Творчество присутствует, помимо интегрирования по частям, использован метод подведения функции под знак дифференциала. Таким образом: Но это ещё не всё, выполняем обратную замену: Если изначально было , то обратно будет В результате получаем общее решение исходного уравнения Бернулли: Тривиальное решение потерялось (это произошло в самом начале при делении на ) и не вошло в общий интеграл. Однако это обстоятельство нас совершенно не волнует, поскольку по условию требовалось решить только задачу Коши (! заметьте, что если бы условие требовало указать в ответе и общее решение, то его следовало бы дополнить функцией ). Найдем частное решение, удовлетворяющее начальному условию Download 37.2 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling