Построение решений дифференциальных уравнений с помощью рядов
Download 33.18 Kb.
|
Курсовая работа На тему «Построение решений дифференциальных уравнений с помощью рядов»
Курсовая работа На тему: «Построение решений дифференциальных уравнений с помощью рядов» Содержание
Введение В общем случае нахождение точного решения обыкновенного дифференциального уравнения первого порядка его интегрированием невозможно. Тем более это неосуществимо для системы обыкновенных дифференциальных уравнений. Это обстоятельство привело к созданию большого числа приближенных методов решения обыкновенных дифференциальных уравнений и их систем. Среди приближенных методов можно выделить три группы: аналитические, графические и численные. Разумеется, подобная классификация в известной мере условна. Например, графический метод ломаных Эйлера лежит в основе одного из способов численного решения дифференциального уравнения. Интегрирование обыкновенных дифференциальных уравнений при помощи степенных рядов является приближенным аналитическим методом, применяемым, как правило, к линейным уравнениям не ниже второго порядка. Аналитические методы встречаются в курсе дифференциальных уравнений. Для уравнений первого порядка (с разделяющимися переменными, однородных, линейных и др.), а также для некоторых типов уравнений высших порядков (например, линейных с постоянными коэффициентами) удается получить решения в виде формул путем аналитических преобразований. Целью работы является анализ одного из приближенных аналитических методов, такого как интегрирование обыкновенных дифференциальных уравнений при помощи рядов, и применение их при решении дифференциальных уравнений. Download 33.18 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling