Differensial tenglamalarni qatorlar yordamida yechish reja differensial tenglama tenglamalarni taqribiy yechish usullari


Download 415.5 Kb.
bet2/2
Sana18.06.2023
Hajmi415.5 Kb.
#1556816
1   2
Bog'liq
DIFFERENSIAL TENGLAMALARNI QATORLAR YORDAMIDA YECHISH

y=x2(7.2.4)

tenglamani boshlang’ich shart u(0)=1, u(0)=0 ni qanoatlantiruvchi yechimi topilsin.


Yechish. Bu misol uchun (7.2.3) qator quyidagi ko’rinishda yoziladi:

(7.2.5)

(7.2.4) dan ketma-ket hosila olsak



y(3)=2xy+x2

y(4)=2y+2xy +2xy + x2’’=2y+4xy + x2’’

y(5)=2y +4y +4xy ’’+2xy ’’+ x2’’’=6y +6xy ’’+ x2’’’

y(6)=12y ’’+8xy ’’’+ x2y(4)

y(7)=20y ’’’+10xy(4)+ x2y(5)

y(8)=30y(4)+12xy(5)+ x2y(6)

Bu tengliklarning har biriga boshlang’ich shartlarni qo’llasak quyidagilarni topamiz:



y’’(0)=0; y’’’(0)=0; y(4)(0)=2; y(5)(0)=y(6)(0)=y(7)(0)=0;

y(8)(0)=60.

Bularni (7.2.5) ga qo’ysak izlanayotgan yechimni topamiz:



Differensial tenglamalarni yechimini koeffitsiyentlari noma’lum bo’lgan quyidagi qator ko’rinishida xam izlash mumkin:


y=a0+a1(x-x0) +a2(x-x0)2+a3(x-x0)3+... (7.2.6)

Bu usulda noma’lum koeffitsiyentlar a0, a1, a2 ... quyidagicha topiladi: (7.2.6) dan hosilalar olinib differensial tenglamaga qo’yiladi. So’ngra “x” ning bir xil darajalari oldidagi koeffitsiyentlari bir-birlariga tenglashtiriladi va boshlang’ich shartlarni hisobga olgan holda noma’lum koeffitsiyentlar a0, a1, a2 , ... an topiladi. Topilgan koeffitsiyentlarni (7.2.6) ga qo’ysak izlanayotgan yechimni topamiz.


Misol. y’’=x2tenglamani boshlang’ich shart u(0)=1, u(0)=0 larni qanoatlantiruvchi yechimi noma’lum koeffitsiyentlar usuli yordamida topilsin.
Yechish. x0=0 bo’lgani uchun yechimni quyidagi qator ko’rinishida qidiramiz:
u=a+a1x+a2x2+...+anxn+... (7.2.7)
Bundan ikki marta hosila olsak

y=a+2a2x+3a3x2+4a4x3+...+nanxn-1...

u’’=2a+6a3x+12a4x2+...+ n(n-1) an xn-2...

Boshlang’ich shartlarni hisobga olgan holda a0=1; a1=0 ekanligini aniqlaymiz. a0 va a1 ni (7.2.7) ga qo’ysak


u=1+a2x2+a3x3+a4x4...+anxn
Bu qatorni qolgan koeffitsiyentlarini topish uchun berilgan tenglamadan y’’-x2y =0 foydalanamiz:

2a+6a3x+12a4x2+20a5x3+30a6x4+...+ n(n-1) axn-2

x2(1+a2x2+a3x3+a4x4...+ anxn+...)=0.

Bu tenglikni “x” ning darajalari bo’yicha guruhlarga ajratamiz

2a2+6a3x+(12a4–1)x2+20a5x3+(30a–a2)x4+(42a7–a3)x5+

+(56a8–a4)x5...=0.

Biz yechimni x 0 hol uchun qidirayotganimiz uchun “x” ning oldidagi koeffitsiyentlarni “0”ga tenglashimiz lozim bo’ladi, ya’ni a2=0, a3=0, 12a4–1=0 .


Bundan a4= ; a5=0; 30a6-a2=0; a6=0 ;a7=0 va 56a8-a4=0 x.k.
Shularni hisobga olgan holda yechimni quyidagicha yozish mumkin
u=1+ x4+ x8...
Galerkin usuli
Differensial tenglamalarga qo’yilgan chegaraviy masalalarni yechishda taqribiy- varasion usullardan biri Galerkin usulini qo’llash maqsadga muofiq bo’ladi. Bu usulda tenglamani yechimi tanlab olingan funktsiyalar yig’indisi ko’rinishida bo’ladi. Bu usulni ikkinchi tartibli chiziqli differensial tenglamaga qo’yilgan chegaraviy masalaga qo’llanishini ko’raylik.

Download 415.5 Kb.

Do'stlaringiz bilan baham:
1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling