Экспертные системы Вначале инженер
Download 85.99 Kb.
|
- Bu sahifa navigatsiya:
- Инженерией знаний
Рис. 11.16. Связь между предметной областью и областью знаний
Это означает, что на основании определённых фактов путём рассуждений формируется логичное, оправданное заключение, которое следует из этих фактов. ЭС с успехом применяются в тех областях, где, кроме применения стандартных алгоритмических методов, основанных на точных вычислениях, по существу используются знания и опыт конкретных экспертов - аналитиков, а принятие решений формируется в условиях неполноты данных и зависит скорее от качественных, чем количественных оценок. К таким предметным областям относится, прежде всего, область анализа финансовой деятельности, где эффективность принимаемых решений зависит от сопоставления множества различных факторов, учёта сложных причинно-следственных связей, применения нетривиальных логических рассуждений и т.п. Классическая экспертная система воплощает в себе неписанные знания, которые должны быть получены от эксперта с помощью интервью, проводимых инженером по знаниям в течение длительного периода времени. Такой процесс создания экспертной системы называется инженерией знаний и осуществляется инженером по знаниям. Инженерией знаний называют получение знаний от эксперта-человека или из других источников и последующее представление знаний в экспертной системе (рис.11.17). Рис. 11.17. Процесс разработки экспертной системы Вначале инженер по знаниям устанавливает диалог с экспертом-человеком, чтобы выявить знания эксперта. Этот этап аналогичен этапу работы, выполняемому системным проектировщиком при обычном программировании в ходе обсуждения требований к системе с клиентом, для которого создается программа. Затем инженер по знаниям представляет знания в явном виде для внесения в базу знаний. После этого эксперт проводит оценку экспертной системы и передаёт критические замечания инженеру по знаниям. Такой процесс повторяется снова и снова, до тех пор, пока эксперт не оценит результаты работы системы как удовлетворительные. Вообще говоря, процесс создания экспертных систем намного отличается от процесса разработки обычных программ. В экспертных системах рассматриваются задачи, не имеющие удовлетворительного алгоритмического решения, поэтому для достижения приемлемого решения используется логический вывод. Поскольку в основе функционирования экспертной системы лежит логический вывод, такая система должна обладать способностью объяснить свои рассуждения, чтобы можно было их проверить. Поэтому неотъемлемой частью любой сложной экспертной системы является средство объяснения. В действительности могут быть разработаны сложные средства объяснения, позволяющие пользователю исследовать многочисленные строки с вопросами наподобие "Что будет, если... ", называемые гипотетическими рассуждениями. Следовательно, инженерия знаний – это область информационной технологии, цель которой – накапливать и применять знания не как объект обработки их человеком, но как объект для обработки их на компьютере. Для этого необходимо проанализировать знания и особенности их обработки человеком и компьютером, а также разработать их машинное представление. К сожалению, точного и неоспоримого определения, что собой представляют знания, до сих пор не дано. Но, тем не менее, цель инженерии знаний – обеспечить использование знаний в компьютерных системах на более высоком уровне, чем до сих пор, – актуальна. Возможность использования знаний осуществима только тогда, когда эти знания существуют, что вполне объяснимо. Технология накопления и суммирования знаний идёт "бок о бок" с технологией использования знаний, где они взаимно дополняют друг друга, и ведут к созданию одной технологии, технологии обработки знаний. Второй класс ЭС используется в ситуациях, когда отсутствуют какие-либо явные связи и закономерности между элементами знаний, а сами знания представлены в виде списков примеров, описывающих реализации тех или иных событий. Если первый класс ЭС работает с хорошо определёнными данными и знаниями, извлечёнными из экспертов - аналитиков инженерами знаний, то второй - формирует свои знания путём адаптации к предметной области, представленной примерами, причём как обучающая, так и анализируемая информация может быть искажена и неполна. В первом случае в основе механизмов вывода, как правило, лежат классические стратегии наследования и логического вывода, то во втором - различные методы индуктивного обобщения по примерам, в частности, свойства используемых для этого искусственных нейронных сетей. В cистеме, основанной на правилах, знания в проблемной области, необходимые для решения задач, закодированы в форме правил и содержатся в базе знаний. Безусловно, для представления знаний наиболее широко применяются правила. Элементы типичной экспертной системы, основанной на правилах, показаны на рис.11.18. Download 85.99 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling