Eslatma. Ikkita matritsani qo’shish yoki ayirish uchun bu matritsalarning tartibi bir xil bo’lishi shart. 1-misol
Download 475.43 Kb. Pdf ko'rish
|
1-mavzu (1)
- Bu sahifa navigatsiya:
- Mustaqil bajarish uchun misollar Berilgan matritsalarning chiziqli kombinatsiyalarini toping: 1.
- 2-misol.
1-mavzu. MATRITSA VA ANIQLOVCHILAR Matritsalar ustida amallar: qo’shish, ayirish, songa ko’paytirish va ko’paytirish. Eslatma.Ikkita matritsani qo’shish yoki ayirish uchun bu matritsalarning tartibi bir xil bo’lishi shart. 1-misol. Agar 1 1 0 3 2 1 A va
1 1 2 0 3 2 B bo’lsa, B A 3 2 ning chiziqli kombinatsiyasini toping. 3 2 3 2 6 0 0 6 9 4 6 2 3 3 6 0 9 6 2 2 0 6 4 2 1 1 2 0 3 2 3 1 1 0 3 2 1 2 3 2
A 1 5 6 6 13 4
2-misol. Agar 2 1 4 6 , 5 4 2 0 1 3
A bo’lsa, AB va BA hisoblang. 2 2 2 3 B A ni hisoblaymiz. Ushbu matritsalarda m=3, p=q=2, n = 2 bo‘lgani uchun ularning ko‘paytirish mumkin va ko‘paytma matritsa 2 3
AB quyidagicha bo‘ladi:
6 29 4 2 10 19 2 5 ) 4 ( 4 1 5 6 4 2 ) 2 ( ) 4 ( 0 1 ) 2 ( 6 0 2 1 ) 4 ( 3 1 1 6 3 2 1 4 6 5 4 2 0 1 3 B A . 2 3 2 2 A B ni hisoblaymiz. Bunda B matritsada 2 ,
m va A matritsada q=3, n=2. BA ko’paytma o’rinli bo’lishi uchun p=q bo’lishi kerak edi, lekin
bundan ko’rinadiki ko’paytma o’rinli emas. Masalan
5 ? 2 2 1 1 4 ? 0 2 3 1 5 ? 2 4 1 6 4 ? 0 4 3 6 5 4 2 0 1 3 2 1 4 6 2 3 2 2 A B . Ya’ni
A B mavjud emas. 3-misol. Agar 0 3 2 1 A bo’lsa, 2
ni hisoblang.
6 3 2 7 0 0 2 3 3 0 1 3 0 2 2 1 3 2 1 1 0 3 2 1 0 3 2 1 2 A A A , Mustaqil bajarish uchun misollar Berilgan matritsalarning chiziqli kombinatsiyalarini toping: 1. 2 0 1 3 3 5 2 1 2 , A E A 2. 4 2 0 3 1 2 2 1 3 , 5 1 3 2 4 3 0 1 2 , 5 4 B A B A AB va BA matritsalar ko’paytmasini hisoblang (agar ular mavjud bo’lsa): 3. 3 1 0 1 2 0 0 1 3 , 5 1 4 2 3 2 1 0 2 В А 4. 0 4 5 3 2 1 , 1 1 0 2 3 1 В А (AB)C va A(BC) matritsalar ko’paytmasini hisoblang 5. 3 2 1 3 , 1 3 0 2 , 1 1 1 1 C B A 6. 3 2 , 3 4 1 2 0 3 , 3 5 1 2 3 2 1 1 4 3 0 5 C B A n A matritsani hisoblang 7. 1 0 1 1 A . 8. 0 0 0 1 0 0 0 1 1 A . ANIQLOVCHILAR Har qanday n-tartibli kvadrat A matritsani A matritsaning aniqlovchisi (determinant) deb nomlangan ifoda bilan bog'lanishi mumkin va quyidagicha belgilanadi: 2-tartibli determinant quyidagicha aniqlanadi
21 22 11 22 21 12 11 a a a a a a a a .
3- tartibli determinant quyidagicha aniqlanadi: 32 23 11 21 33 12 31 22 13 32 21 13 31 23 12 33 22 11 33 32 31 23 22 21 13 12 11 a a a a a a a a a a a a a a a a a a a a a a a a a a a
1. “Uchburchaklar” usuli yoki Sarryus qoidasi (3-tartibli determinat). 2. Diagonallar usuli (3-tartibli determinatni) 3. 3-tartibli determinatni birinchi satr elementlari bo’yicha yoyib hisoblash usuli 32 31
21 13 33 31 23 21 12 33 32 23 22 11 33 32 31 23 22 21 13 12 11 a a a a a a a a a a a a a a a a a a a a a a a a
4. n-tartibli determinantni 1-satr bo’yicha yoyish usuli. ya’ni
n n n n nn n n n n a a a a a a a a a a a a a a a a a a a a A 3 1 3 33 31 2 23 21 12 3 2 3 33 32 2 23 22 11 det
1 2 1 1 3 32 31 1 2 22 21 1 1 2 1 3 32 31 2 22 21 13 1 nn n n n n n n nn n n n n a a a a a a a a a a a a a a a a a a a a
Agar A matritsaning determinanti 0 bo‘lsa u maxsus matritsa, aks holda maxsusmas matritsa deb ataladi. 1-misol. Ikkinchi tartibli determinantni hisoblang 4 3 2 1
2 3 2 4 1 4 3 2 1
0 1 3 4 5 1 2 6 2 Uchburchaklar usuli
. 112 ) 2 ( ) 1 ( 4 0 1 6 3 5 ) 2 ( ) 2 ( ) 1 ( 1 3 4 6 0 5 2 Dioganallar usuli
. 112 ) 2 ( ) 1 ( 4 0 1 6 3 5 ) 2 ( ) 2 ( ) 1 ( 1 3 4 6 0 5 2 Birinchi ustun elementlari bo’yicha yoyib hisoblash usuli
112 32 72 8 16 2 12 6 4 2 3 5 1 1 2 3 4 0 1 6 4 1 0 5 2 1 3 5 1 ) 2 ( 1 0 3 4 1 6 1 0 1 4 5 2 1 3 1 2 1 1 1 3-misol. Determinantlarning xossalaridan foydalanib quyidagini isbotlang: 3 3 3 2 2 2 1 1 1 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 c b a c b a c b a y b x a c b a y b x a c b a y b x a c b a
3 3 3 2 2 2 1 1 1 3 3 3 2 2 2 1 1 1 3 3 3 2 2 2 1 1 1 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 . Yuqoridagi ifodadan ko’rinadiki 2-determinantning 1-ustuni 3-ustuniga; 3-determinantda 2-ustun 3-ustunga proporsional shuning uchun ularning qiymati 0 ga teng bo’ladi. Shu bilan talab qilingan tenglik isbotlandi.
1 4 2 0 2 5 1 3 2 2 1 1 2 0 3 2 . 0 raqami qatnashgan satr yoki ustun bo’yicha yoyish berigan determinantni hisoblash qulaydir. Shuning uchun biz 1-satr bo’yicha yoyamiz:
63 6 2 0 31 3 9 2 4 2 0 5 1 3 2 1 1 2 1 2 0 2 1 3 2 1 1 0 1 4 0 2 5 3 2 2 1 3 1 4 2 2 5 1 2 2 1 2 Mustaqil bajarish uchun misollar Ikkinchi tartibli determinantlarni hisoblang va tenglamani yeching. 1. cos sin
sin cos
. 2. 0 1 2 1 1 2 x x x x 3-tartibli determinantni hisoblang 3. 9 8 7 6 5 4 3 2 1 . 4. 0 5 0 4 3 2 0 1 0 . Biror satri yoki ustuni bo’yicha yo’yish orqali 3-tartibli determinantni hisoblang 5. 0 0 0 0
d c b a . 6. 6 5 4 1 0 0 3 2 1 . Determinantlarning xossalaridan foydalanib hisoblang 7. 1 cos sin 1 cos sin 1 cos sin 2 2 2 2 2 2 . Determinantni satr yoki ustun bo’yicha yoshish yordamida hisoblang: 8. 0 0 0 5 4 3 0 0 2 2
1 d c b a . Download 475.43 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling