Eyler va Lagranj tenglamalari


Download 114 Kb.
bet1/4
Sana05.01.2022
Hajmi114 Kb.
#231732
  1   2   3   4
Bog'liq
Eyler va Lagranj tenglamalari


Eyler va Lagranj tenglamalari.

Differensial tenglamalar orasida oddiy almashtirishlar vositasida o’zgarmas koeffisiyentli tenglamalarga o’tuvchi o’zgaruvchi koeffisiyentli tenglamalar ham uchraydi.



 (12)

ko’rinishdagi tenglamaga Eyler tenglamasi deyiladi, bu yerda  o’zgarmas sonlar. Agar (12) tenglamada  ni  bilan almashtirsak tenglamaning ko’rinishi o’zgarmaydi. Demak, (12) tenglamada  erkli o’zgaruvchini

 (13)

almashtirish bilan kiritsak, u holda  ni  bilan almashtirishda tenglama o’zgarmaydi, ya’ni hosil bo’lgan yangi tenglama  ni oshkor ko’rinishda saqlamaydi. Erkli o’zgaruvchini almashtirishda tenglama chiziqli tenglamaga o’tmaganligi uchun, biz o’zgarmas koeffisiyentli chiziqli tenglamaga ega bo’lamiz.

Bu tasdiqni hisoblashlar vositasida bevosita tekshirishimiz mumkin. Biz  funksiyaning  bo’yicha hosilalarini (13) formula bo’yicha  bo’yicha hosilalari orqali ketma ket ifodalaymiz:



Biz ko’ramizki,  bo’yicha olingan birinchi, ikkinchi va uchinchi tartibli hosilalarni qatnashgan ifodalar mos ravishda  va  ko’paytuvchilarga ega. Faraz qilaylik  bo’yicha olingan  tartibli hosila



ko’rinishga ega bo’lsin, bu yerda  o’zgarmas sonlar. U holda 

bo’yicha olingan  tartibli hosila



ko’rinishga ega bo’ladi va yana qavs oldida  ko’paytuvchi , qavslar ichida esa  bo’yicha birinchi tartibli hosiladan boshlab tartibli hosilagacha ifodalarning chiziqli kombinatsiyalari joylashgan. Demak ko’rsatilgan xossa ixtiyoriy  natural soni uchun isbotlandi. Biz hisoblangan hosilalarni (1) tenglamaga qo’ysak, har bir  uchun  ifodani  ko’paytirishlozim bo’ladi va shu bilan birga  ni o’zida saqlovchi ko’rsatkichli ko’paytuvchilar qisqaradi hamda o’zgarmas koeffisiyentli chiziqli tenglama hosil bo’ladi.


Download 114 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling