[-]
Download 1.57 Mb. Pdf ko'rish
|
funksional analiz misol va masalalar yechish 1 qism
a, b]
! g ! & C ∞ [a, b] ρ (x, y) = ∞ k =0 1 2 k · max a ≤t≤b ## x (k) (t) − y (k) (t) ## 1 + max a ≤t≤b ## x (k) (t) − y (k) (t) ## $ (X, ρ) X & ρ 1 (x, y) = ρ (x, y) 1 + ρ (x, y) ; ρ 2 (x, y) = ln (1 + ρ (x, y)) ; ρ 3 (x, y) = e ρ (x,y) − 1; ρ 4 (x, y) = min { 1; ρ (x, y) } ###7"##`b" ρ : X×X → R 5 % ρ (x, y) = . n i =1 |x i − y i | 2 x, y ∈ R n . & ρ ∞ (x, y) = max 1≤i≤n |x i − y i | , x, y ∈ R n . ' ρ 1 (x, y) = n k =1 |x k − y k | , x, y ∈ R n . . ρ p (x, y) = p . n i =1 |x i − y i | p , p ≥ 1, x, y ∈ R n . / ρ (x, y) = sup 1≤n<∞ |x n − y n | x, y ∈ m. ρ (x, y) = sup 1≤n<∞ |x n − y n | x, y ∈ c. ρ (x, y) = . ∞ n =1 |x n − y n | 2 x, y ∈ 2 . ρ (x, y) = ∞ n =1 |x n − y n | , x, y ∈ 1 . ρ (x, y) = p . ∞ n =1 |x n − y n | p x, y ∈ p . $ ρ (f, g) = max a ≤x≤b |f (x) − g (x)| f, g ∈ C[a, b]. % ρ 1 (f, g) = + b a |f(x) − g(x)| dx, f, g ∈ C[a, b]. & ρ 2 (f, g) = /+ b a |f(x) − g(x)| 2 dx, f, g ∈ C[a, b]. ' ρ p (f, g) = p /+ b a |f(x) − g(x)| p dx, p ≥ 1, f, g ∈ C[a, b]. . ρ (x, y) = max a ≤t≤b |x (t) − y (t)| + max a ≤t≤b |x (t) − y (t)| , x, y ∈ C (1) [a, b]. / ρ (x, y) = |x(a) − y(a)| + V b a [x − y], x, y ∈ V [a, b]. ρ (x, y) = |x(a) − y(a)| + V b a [x − y], x, y ∈ AC[a, b]. ρ (f, g) = + b a |f(x) − g(x)| dx, f, g ∈ L 1 [a, b]. ρ (f, g) = /+ b a |f(x) − g(x)| 2 dx, f, g ∈ L 2 [a, b]. ρ (f, g) = p /+ b a |f(x) − g(x)| p dx, p ≥ 1, f, g ∈ L p [a, b]. _ - (R n , ρ 1 ) = R n 1 , (R n , ρ p ) = R n p , (R n , ρ ∞ ) = R n ∞ , (R n , ρ ) = R n . (C[a, b], ρ 1 ) = C 1 [a, b], (C[a, b], ρ 2 ) = C 2 [a, b], (C[a, b], ρ p ) = C p [a, b]. ##`a"##b`" ρ : X × X → R $ ρ (x, y) = ⎧ ⎨ ⎩ 0, x = y EKU K (x, y), x = y , x, y ∈ N. % ρ (x, y) = ⎧ ⎨ ⎩ 0, x = y EKU B (x, y), x = y , x, y ∈ N. & ρ (x, y) = | sin x − sin y| , x, y ∈ R. ' ρ (x, y) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 0, x = y 1, x < y 2, x > y, x, y ∈ R. . ρ (x, y) = |x 1 − y 2 | + |y 1 − x 2 | , x, y ∈ R 2 . / ρ (x, y) = |x 1 − y 1 | + 2 |x 2 − y 2 | 2 , x, y ∈ R 2 . ρ (x, y) = |x 1 − y 1 | + |x 2 − y 2 | , x, y ∈ R 3 . ρ (f, g) = |f (0) − g (0) | + |f (1) − g (1) | , f, g ∈ C[0, 1]. ρ (x, y) = ∞ n =1 |x n − y n | 2 x, y ∈ 2 . ##bb"##aW" x ∈ X y ∈ X " & , ###7"##`b X = N, x = 5, y = 25, ρ (x, y) = 0, 1 · |x − y| . $ X = R 3 , x = (8, 4, 3), y = (6, 0, −1). % X = R 4 ∞ , x = (−1, −2, 3, 0), y = (4, 2, 0, −2). & X = R 4 1 , x = (4, 5, 0, 1), y = (−3, 0, 2, 7). ' X = P ≤n , x (t) = 1 + t, y(t) = 2t, ρ (x, y) = 1 + 0 |x(t) − y(t)| dt. . X = C[0, π], x (t) = sin t, y = cos t. $/ X = C 2 [−π, π], x (t) = e it , y (t) = e −it . $ X = m, x n = (− 1) n , y n = n n + 1 . $ X = c, x n = n + 1 n , y n = 1 − (−1) n 1 n . $ X = c 0 , x n = 2 2−n , y n = −2 1−n $ X = 2 , x = (1, 1, 0, 1, 0, 0, ...), y = (0, 0, 0, ...) . $$ X = L 1 [0, π], x(t) = sin t, y (t) = cos t. $% X = L 2 [0, π], x(t) = sin t, y (t) = cos t. $& X = V [−π, π], x (t) = cos t, y (t) = 1. $' X = M[0, 2π], ρ(x, y) = sup 0≤t≤4 |x(t) − y(t)| , x(t) = t, y(t) = sin t. 9 ! 2- * # * ,-"- 0 "0 "0 X x 1 , x 2 , . . . , x n , . . . " x * lim n →∞ ρ (x n , x ) = 0 + {x n } " x x {x n } " * ε > 0 ! N ε + ! n > N ε m > N ε ! ρ (x n , x m ) < ε + { x n } * lim n →∞ ρ (x n , x 0 ) = 0 lim n →∞ ρ (x n , y n ) = 0 lim n →∞ ρ (y n , x 0 ) = 0 # `" 0 ≤ ρ (y n , x 0 ) ≤ ρ (y n , x n ) + ρ (x n , x 0 ) ' lim n →∞ ρ (y n , x 0 ) = 0 x n (t) = n 2 t · e −n t " x (t) = 0 ! C 1 [0, 1] ! t ∈ [0, 1] ! lim n →∞ x n (t) = 0 ( \ x n (t) " x (t) = 0 " [ ρ 1 (x n , 0) ρ 1 (x n , x ) = 1 $ 0 |x n (t) − 0| dt = 1 $ 0 |x n (t)| dt = 1 $ 0 n 2 te −nt dt = 1 − (n + 1)e −n . ' lim n →∞ ρ 1 (x n , x ) = 1 \ {x n } " x (t) = 0 C 1 [0, 1] ! () * +, * *+- + # - (X, ρ) x, y, z, t ! 5 | ρ (x, z) − ρ (y, t) | ≤ ρ (x, y) + ρ (z, t) ; 5 | ρ (x, z) − ρ (y, z) | ≤ ρ (x, y) {x n } " * lim n →∞ ρ (x 2n , a ) = 0, lim n →∞ ρ (x 2n+1 , b ) = 0 lim n →∞ ρ (x n , c ) = 0 a = b = c lim n →∞ ρ (x n , a ) = 0 $ C [0, 1] 5 x n (t) = t n − t n +1 ; 5 y n (t) = t n − t 2n ; !5 z n (t) = t n − 2t n +1 + t n +2 ; 5 u n (t) = t n n − t n +1 n + 1 " ! c % . " C (1) [0, 1], C 1 [0, 1] ! c & C 1 [0, 1] ! C [0, 1] ! x n (t) " " ' C 1 [0, 1] x (t) = 0 ! ! t ∈ [0, 1] > " . * x n (t) " C [0, 1] x (t) " C 1 [0, 1] C 2 [0, 1] x (t) / C [0, 1] ! C (1) [0, 1] ! g ! " " , 5 x n = (1, 2, . . . , n, 0, . . .) ; 5 y n = (−1, 2, . . . , (−1) n n, 0, . . .) ; !5 z n = (1, 1, . . . , 1, 0 12 3 n 0, . . .); 5 u n = 1, 1 2 , . . . , 1 n , 0, . . . ; 5 e n = (0, . . . , 0, 1 0 12 3 n , 0, . . .); 5 w n = ( 1 n α , . . . , 1 n α , 0 12 3 n 0, . . .); α > 0 " c 0 , c p m " ! R ρ (x, y) = | arctg x − arctg y | , " 3 x n = n 5 " ' " ! " ! ' ε > 0 ! ρ (x k , x m ) ≥ ε > 0, k = m ! {x n } " ! " " + $ (X, ρ) {x n } {y n } " , {a n = Download 1.57 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling