Analytical Mechanics This page intentionally left blank


Download 10.87 Mb.
Pdf ko'rish
bet36/55
Sana30.08.2017
Hajmi10.87 Mb.
#14604
1   ...   32   33   34   35   36   37   38   39   ...   55


0

=

ω(J



0

) is non-resonant, it is always possible

to determine formally the functions A and B (parametrising the deformation to

invariant tori of the torus of frequency

ω

0

) via the series expansions (12.112)



and (12.123).

Two problems are still open:

(a) the question of the convergence of the Fourier series expansions (12.123) of

the functions A

(k)

(ψ) and B



(k)

(ψ);


(b) the question of the convergence of the power series (12.112).

The first question has an easy solution. For fixed µ > l

− 1, consider the

set of diophantine frequencies

ω

0

(see Definition 12.7) of constant γ > 0 (and



exponent µ):

C

γ,µ



=

0



∈ R

l

||ω



0

· m| ≥ γ|m|

−µ

}.

(12.126)



12.6

Analytical mechanics: canonical perturbation theory

527

Since the Hamiltonian H



0

is non-degenerate, to every

ω

0

∈ C



γ,µ

there corresponds

a unique vector J

0

of the actions for which



ω(J

0

) =



ω

0

. Let



A

γ,µ


=

{J

0



∈ A|ω(J

0

)



∈ C

γ,µ


}.

(12.127)


Evidently

A

γ,µ



=

ω

−1



(C

γ,µ


)

(12.128)


(recall that the hypothesis of non-degeneracy of H

0

guarantees that the map



J

→ ω(J) is a local diffeomorphism).

Now fix a value of the actions J

0

∈ A



γ,µ

, so that the corresponding frequency

is

ω

0



=

ω(J


0

)

∈ C



γ,µ

. Then we can extend the arguments considered in the

proofs of Theorems 12.4 and 12.9 to the equations (12.124) and (12.125) for the

Fourier series expansions of A

(k)

(ψ) and of B



(k)

(ψ), and prove their convergence.

P

roposition 12.6 If the Hamiltonian H



0

is non-degenerate in the open set A,

for fixed J

0

∈ A



γ,µ

the functions A

(k)

: T


l

→ R


l

and B


(k)

: T


l

→ R


l

which


solve the system (12.124), (12.125) have a convergent Fourier series expansion,

for every k

≥ 0.

Problem (a) is therefore solved. The solution of problem (b) is much more



difficult. However, it is necessary to give this question an affirmative answer if

the existence of deformations of a torus into invariant tori is to be proven.

Poincar´

e was sceptical of the possibility of proving the convergence of the

Lindstedt series, and in M´

ethodes Nouvelles, volume II, p. 104 he comments that

Supposons pour simplifier qu’il y ait deux degr´

es de libert´

e; les s´

eries ne pourraient-

elles pas, par exemple, converger quand x

0

1



et x

0

2



ont ´

et´


e choisis de telle sorte que le

rapport


n

1

n



2

soit incommensurable, et que son carr´

e soit au contraire commensurable

(ou quand le rapport

n

1

n



2

est assujetti `

a une autre condition analogue `

a celle que je

viens d’´

enoncer un peu au hasard)? Les raisonnements de ce chapitre ne me permettent

pas d’affirmer que ce fait ne se pr´

esentera pas. Tout ce qu’il m’est permis de dire,

c’est qu’il est fort invraisemblable.

[Suppose for simplicity there are two degrees of freedom; would it be possible for

the series to converge when, for example, x

0

1



and x

0

2



—the initial conditions—are

chosen in such a way that the ratio n

1

/n

2



of the frequencies—in our notation

ω

0



= (n

1

, n



2

)—is irrational, however such that its square is rational (or when the

ratio n

1

/n



2

satisfies some other condition analogous to the one I just stated a

bit randomly)? The arguments in this chapter do not allow me to rule out this

case, although it appears to me rather unrealistic.]

Weierstrass, as opposed to Poincar´

e, was convinced of the possibility that the

Lindstedt series could converge (see Barrow-Green 1997).

It is nevertheless surprising that the condition referred to as ‘a bit randomly’ by

Poincar´

e—implying that

ω

0

satisfies a diophantine condition, see Remark 12.8—is



correct.

528

Analytical mechanics: canonical perturbation theory

12.6

The Kolmogorov–Arnol’d–Moser theorem (see Kolmogorov 1954, Arnol’d 1961,



1963a, Moser 1962, 1967), whose proof goes beyond the scope of the present

introduction, guarantees in practice the convergence of the power series (12.112)

as long as the frequency

ω

0



satisfies a diophantine condition.

T

heorem 12.12 (KAM) Consider a quasi-integrable Hamiltonian system



(12.106) and assume that the Hamiltonian H is analytic and non-degenerate.

Let µ > l

− 1 and γ > 0 be fixed. There exists a constant ε

c

> 0, depending on



γ, such that for every J

0

∈ A



γ,µ

there exists a deformation

{T

ε

}



ε

∈(−ε


c

c



)

of the


torus

T

0



= J

0

×T



l

into invariant tori for the quasi-integrable system (12.106).

Remark 12.12

It is possible to prove that ε

c

=

O(γ



2

) (see P¨

oschel 1982, Arnol’d et al. 1983).

Remark 12.13

Since we assume that H

0

is non-degenerate, the correspondence between actions



J and frequencies

ω is a diffeomorphism, and there therefore exists the inverse

function J = J(

ω) of ω = ω(J) = ∇

J

H

0



(J). Hence, thanks to (12.65),

|A\A


γ,µ

| =


A

\A

γ,µ



d

l

J



=

ω

(A)\C



γ,µ

det


2

H



0

∂J

i



∂J

k

(J(ω))



−1

d

l



ω ≤ c

−1

|ω(A)\C



γ,µ

|.

(12.129)



Assume for simplicity that the open set A of R

l

is obtained as the preimage of



(0, 1)

l

via the map



ω → J(ω). Then ω(A) = (0, 1)

l

, and from (12.129), taking



into account (12.80), it follows that

|A\A


γ,µ

| ≤ c


−1

(

|(0, 1)



l

| − |C


γ,µ

∩ (0, 1)


l

|) ≤ c


−1

aγζ(µ + 2

− l).

(12.130)


By Remark 12.12 γ =

O(



ε), and hence the Lebesgue measure of the comple-

ment, in the phase space, of the set of invariant tori is

O(



ε); therefore it tends



to 0 for ε

→ 0.


Remark 12.14

The set A

γ,µ

has a rather complex structure: it is closed but totally disconnected,



and it is a Cantor set.

3

Because of the density in R



l

of resonant frequencies, the

complement of A

γ,µ


is dense.

Remark 12.15

In practice, in the proof of the KAM theorem one constructs a canonical trans-

formation near the identity of the variables (J,

χ) to new variables (J, χ) with

generating function

χ · J + εW (χ, J, ε) and a new Hamiltonian K(J, ε), satisfying

H

0



(J + ε

χ



W ) + εF (J + ε

χ



W ,

χ) = K(J, ε)

3

A closed set is a Cantor set if it is totally disconnected and has no isolated points.



12.7

Analytical mechanics: canonical perturbation theory

529

every time that J



∈ A

γ,µ


. The Hamilton–Jacobi equation therefore admits a solu-

tion in the set of invariant tori A

γ,µ

(see Chierchia and Gallavotti 1982, P¨



oschel

1982). Hence to the system (12.106) there are associated l first integrals of the

motions (the new actions). However, these integrals are not defined everywhere,

but only on A

γ,µ

; hence, although the dependence on



χ and on ε is regular, they

do not have a regular dependence on J, and the result is not in contradiction

with Theorem 12.8.

For more details on this topic, which we had no pretension to treat exhaustively,

we recommend reading chapter 5 of Arnol’d et al. (1983).

12.7


Adiabatic invariants

Consider a Hamiltonian system with one degree of freedom, depending on one

parameter r, so that its Hamilton function has the form

H = H(p, q, r).

(12.131)

As an example, we can consider a pendulum (see Example 11.11) and take as

parameter the length l, or a harmonic oscillator (see (11.28)) and treat the

frequency ω as a parameter.

If for every fixed value of the parameter r the system admits motions of rotation

or of libration, the Hamiltonian (12.131) is completely canonically integrable and

there exists a canonical transformation depending on the parameter r to action-

angle variables (J, χ). Let W (q, J, r) be the generating function of this canonical

transformation, where we emphasise the dependence on the parameter r.

We denote by K

0

(J, r) the Hamiltonian corresponding to the new variables,



and by ω

0

(J, r) = (∂K



0

/∂J )(J, r) the frequency of the motion. Note that the

action J is a function of (p, q, r).

Suppose that the system is subject to an external influence, expressed as a time

dependence r = r(t) of the parameter r. If the rate of change of the parameter is

comparable with the frequency ω

0

(J, r) of the motion of the system corresponding



to a fixed value of r, in general the system is no longer integrable, because of

the overwhelming effect of the external influence, and it is not possible to find

a first integral—not even in an ‘approximate’ sense (note that the energy is

not conserved, because dH/dt = ∂H/∂t = ∂H/∂r ˙r). The situation is however

substantially different if the variation of the parameter in time is slow, and hence

if

| ˙r| ≤ ε



1, where r and t are dimensionless with respect to two respective

‘natural’ scales.

4

4

It is however possible to introduce the notion of a smooth function on a Cantor set



(Whitney smoothness) and prove that in this wider sense the dependence of

W on W is

smooth; see P¨

oschel (1982) for details.



530

Analytical mechanics: canonical perturbation theory

12.7

In this case, the dependence on time of the parameter can be expressed through



the so-called slow time:

r = r(τ ),

τ = εt,

(12.132)


and it is possible to find a constant of the motion in an approximate sense that

we now clarify.

D

efinition 12.11 A function A(p, q, r) is an adiabatic invariant of the system



(12.131) subject to a slow variation (12.132) of the parameter r, if for every δ > 0

there exists ε

0

> 0 such that for every fixed ε



∈ (0, ε

0

) and for every t



∈ [0, 1/ε]

we have


|A(p(t), q(t), r(εt)) − A(p(0), q(0), r(0))| < δ,

(12.133)


where (p(t), q(t)) is the solution of the system of Hamilton’s equations correspond-

ing to H(p, q, r(εt)):

˙

p =


∂H

∂q



(p, q, r(εt)),

˙

q =



∂H

∂p

(p, q, r(εt)),



(12.134)

with initial conditions (p(0), q(0)).

Remark 12.16

An adiabatic invariant is an approximate constant of the motion of the Hamilto-

nian flow associated with (12.134) for a bounded time interval of length 1/ε,

which grows indefinitely if the rate of change of the parameter ε

→ 0. If for a

fixed value of ε > 0 a function A(p, q, r) satisfies equation (12.133) for all times

t

≥ 0, then A is a perpetual adiabatic invariant.



Remark 12.17

It is immediate to realise that the energy is not, in general, an adiabatic invari-

ant. Consider, for example, a point particle in the absence of forces, whose mass

changes slowly with time, so that its Hamiltonian is H = p

2

/2m(εt). If m =



m

0

(2



− sin(πεt/2)), since p(t) = p(0), we have E (1/ε) = p

2

(0)/2m



0

= 2E(0).


T

heorem 12.13 Assume that the Hamiltonian (12.131) is of class C

3

and that


the dependence r(τ ) of the parameter on the slow time has the same regularity.

If there exists a δ > 0 such that for all τ

∈ [0, 1] we have

ω

0



(J, r(τ )) > δ,

(12.135)


the action J (p, q, r) is an adiabatic invariant.

12.7

Analytical mechanics: canonical perturbation theory

531

Proof


Since the parameter depends on time, r = r(εt), the function W (q, J, r(εt))

generates a canonical transformation depending on time, and the new Hamiltonian

is

K(J, χ, εt) = K



0

(J, r(εt)) +

∂W

∂t

(q(J, χ, r(εt)), J, r(εt))



= K

0

(J, r(εt)) + εf (J, χ, εt),



(12.136)

where f (J, χ, εt) = r (εt)∂W /∂r. The corresponding Hamilton equations are

˙

J =


−ε

∂f

∂χ



(J, χ, εt),

˙

χ = ω



0

(J, r(εt)) + ε

∂f

∂J

(J, χ, εt).



(12.137)

We now seek the generating function W (χ, J , εt) of a canonical transformation

near the identity that would eliminate the dependence on the angle in the

Hamiltonian, to first order in ε, and hence a solution of

K

0

∂W



∂χ

, r(εt)


+ εf

∂W

∂χ



, χ, εt

+

∂W



∂t

= K


0

(J , εt) + εK

1

(J , εt) +



O(ε

2

).



(12.138)

Setting W = χJ + εW

(1)

(χ, J , εt), substituting and equating the corresponding



terms in the expansion in ε we find:

K

0



(J , εt) = K

0

(J , r(εt)).



(12.139)

To first order we therefore have

ω

0

(J , r(εt))



∂W

(1)


∂χ

(χ, J , εt) + f (J , χ, εt) = K

1

(J , εt),



(12.140)

since


∂W

∂t

= ε



∂W

(1)


∂t

= ε


2

∂W

(1)



∂τ

=

O(ε



2

).

(12.141)



Condition (12.135) guarantees that the solution of (12.140) exists and (recall

Theorem 12.1) is given by

K

1

(J , εt) =



1



0

f (J , χ, εt) dχ,

W

(1)


(χ, J , εt) =

1

ω



0

(J , r(εt))

χ

0

[K



1

(J , εt)


− f(J, ξ, εt)] dξ.

(12.142)


532

Analytical mechanics: canonical perturbation theory

12.8

The hypothesis that H is of class



C

3

ensures that W



(1)

is of class

C

2

and



generates a canonical transformation. From

˙

J =



∂K

∂χ



=

O(ε


2

),

(12.143)



it follows that, for every t

∈ [0, 1/ε],

|J(t) − J(0)| = O(ε),

(12.144)


and therefore our claim holds, as

|J(t) − J(0)| ≤ |J(t) − J(t)| + |J(t) − J(0)| + |J(0) − J(0)|,

(12.145)

and the transformation from J to J is near the identity.

Remark 12.18

Arnol’d (1963b) proved that the KAM theorem guarantees the perpetual adia-

batic invariance of the action if the dependence of the parameter r on the slow

time τ is periodic, and hence if there exists a T > 0 such that r(τ ) = r(τ + T )

for every τ . It is however necessary to impose the condition of non-degeneracy:

2



K

0

∂J



2

=

∂ω



0

∂J

=



/ 0,

(12.146)


to assume that the Hamiltonian is an analytic function of (p, q, r), and that the

dependence of r on τ is also analytic.

Remark 12.19

It is possible to extend Theorem 12.13 to the case of more degrees of free-

dom, but the proof is much more complicated (see Neishtadt 1976, Golin et al.

1989), because one must overcome the difficulties generated by the presence of

small denominators and by the dependence of the frequencies (and of the non-

resonance condition) on the parameter. The proof is much simpler, and similar

to that of Theorem 12.13, if the frequencies do not depend explicitly on the

parameter (see Golin and Marmi 1990).

12.8

Problems


1. Compute the first order of the canonical perturbation theory for the

Hamiltonian

H =

p

2



+ x

2

2



2

2



+

εx



2

.

Write down explicitly the generating function W and the new action and angle



variables J and χ . (Solution: J = J +(ε sin χ)/

J , χ = χ



−(ε cos χ)/2J

3/2


, W =

J χ + (εcos χ)/

J .)


12.8

Analytical mechanics: canonical perturbation theory

533

2. If V =



− cos x − cos(x − t) compute u

(1)


in the expansion (12.36).

(Solution: u

(1)

= (1/ω


2

) sin ξ + [1/(ω

− 1)

2

] sin(ξ



− t).)

3. If V =



k



=1

e

−k



cos(x

− kt) compute u

(1)

in the expansion (12.36).



(Solution: u

(1)


=

k



=1

[e

−k



/(ω

− k)


2

] sin(ξ


− kt).)

4. Prove that if V is a trigonometric polynomial of degree r, then u

(n)

in the


expansion (12.36) is a trigonometric polynomial of degree nr for every n

≥ 1.


5. Check directly that

F

(1)



and

F

(2)



in equation (12.92) are homogeneous

trigonometric polynomials of degree 4 and 6, respectively. Prove that

F

(r)


is a

homogeneous trigonometric polynomial of degree 2(r + 1).

6. Given the Hamiltonian

H = J


1

+ ωJ


2

+



ω

J

1



J

2

cos



2

χ

1



cos

2

χ



2

,

prove that the Birkhoff series (12.86) to third order is given by



H =J

1

+ ωJ



2

+ ε


J

1

J



2

ω

− ε



2

J

1



J

2

ω



2

J

1



+

J



2

2

+



J

2

− J



1

8(1


− ω)

+

J



1

+ J


2

8(1 + ω)


+ ε

3

4J



2

1

J



2

2

ω



3

1

ω



2

+

2



ω



(1

− ω


2

)

2



+

J

1



+ ωJ

2

ω



2

J

1



+ J

2

8(1 + ω)



+

J

2



− J

1

8(1



− ω)

+

8J



1

ω

+ 8J



2

+ ε


3

J

2



− J

1

ω(1



− ω)

J

2



− J

1

8(1



− ω)

+ 4J


2

+

4J



1

ω

+



J

1

+ J



2

ω(1 + ω)


J

1

+ J



2

8(1 + ω)


+ 4J

2

+



4J

1

ω



.

(The first two orders are computed quickly but the third order requires more

work.)

7. Given the Hamiltonian



H = J

1

+ ωJ



2

+ ε[J


2

+ F (χ


1

, χ


2

)],


where F (χ

1

, χ



2

) =


m∈Z

2

\0



e

−|m


1

|−|m


2

|

e



i(m

1

χ



1

+m

2



χ

2

)



and ω is an irrational number,

prove that the formal solution of the Hamilton–Jacobi equation (12.14) for H is

given by

H = J


1

+ (ω + ε)J

2

,

W = J



1

χ

1



+ J

2

χ



Download 10.87 Mb.

Do'stlaringiz bilan baham:
1   ...   32   33   34   35   36   37   38   39   ...   55




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling