Формирование знаний о числах у детей обучение счету


Глава 1 Теоретические аспекты обучения счету детей среднего дошкольного возраста


Download 232.51 Kb.
bet2/7
Sana18.06.2023
Hajmi232.51 Kb.
#1582138
TuriРеферат
1   2   3   4   5   6   7
Bog'liq
Формирование знаний о числах у детей обучение счету

Глава 1 Теоретические аспекты обучения счету детей среднего дошкольного возраста



    1. Понятие и сущность счета и счетной деятельности

Счет – это деятельность с конечными множествами. Счет включает в себя структурные компоненты:



  • цель (выразить количество предметов числом), средства достижения (процесс счета, состоящий из ряда действий,отражающих степень освоения деятельности);

  • результат (итоговое число): сложность представляется для детей в достижении результата счета, то есть итог, обобщение.

Выработка умения отвечать на вопрос «сколько?» словами много, мало, один два, столько же, поровну, больше, чем ускоряет процесс осмысления детьми знания итогового числа при счете.Из теории арифметики известно, что счет – это установление взаимно однозначного соответствия элементов между двумя сравниваемыми множествами. [2]
Основная цель занятий математикой - дать ребёнку ощущение уверенности в своих силах, основанное на том, что мир упорядочен и потому постижим, а, следовательно, предсказуем для человека. Возникновение математических понятий произошло задолго до появления собственно математических текстов. Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, сопоставляя им различные части тела, главным образом, пальцы рук и ног. Наскальный рисунок, сохранившийся до наших времен от каменного века, изображает число 35 в виде серии выстроенных в ряд 35 палочек-пальцев. Первыми существенными успехами в арифметике стали концептуализация числа и изобретение четырех основных действий: сложения, вычитания, умножения и деления.
Первым шагом или этапом к возникновению счёта было установление «взаимно однозначного соответствия» между считаемыми предметами и некоторым другим множеством. Счёт строился на однозначных соответствиях; «у некоторых южноафриканских племен при счёте дотрагиваются до каждого предмета по очереди пальцами, начиная с мизинца левой руки».Самым трудным этапом, который прошло человечество при выработке понятия о числе, считается выделение им понятия единицы из понятия «много». Оно произошло, по всей вероятности, еще тогда, когда человечество находилось на низшей ступени развития. В.В. Бобынин объясняет такое выделение тем, что человек обычно захватывает рукой один предмет, а это, по его мнению, и выделило единицу из множества. Таким образом, начало счисления, по мнению Бобынина, это создание системы, состоящей из двух представлений: «единица» и «неопределенное множество».[3]
На современном этапе счет является ведущей ступенью в образовании человека. Еще с раннего детства человеку стремятся преподать навыки счета, которые используются и усовершенствуются всю жизнь. Началом формирования навыков счета является дошкольное обучение математике.
Основоположники системы математического образования дошкольников Я.А. Коменскийи И.Г. Песталоцци считали, что основы арифметики можно заложить уже на третьем году жизни, когда дети начинают считать до пяти, а впоследствии до десяти или, по крайней мере, начинают ясно выговаривать эта числа. Если на четвертом, на пятом, на шестом году они научатся считать по порядку до двадцати и быстро различать, что 7 больше 5, 15 меньше 30, то этого будет достаточно.[7;13]
В педагогических сочинениях отца русской дидактики К. Д. Ушинского говорится, что, прежде всего, следует выучить детей считать до десяти на наглядных предметах: на пальцах, орехах, и т. д., которые не жалко было бы и разломать, если придется показать наглядно половину, треть, и т.д.[17]
Считать следует учить назад и вперед так, чтобы дети с одинаковой легкостью считали от единицы до десяти и от десяти до единицы. Потом следует научить считать их парами, тройками, пятерка­ми, чтобы дети поняли, что половина десяти равна пяти и т. д. Ушинский говорил, что надо просто «приучить дитя распоряжаться с десятком совершенно свободно - и делить, и умножать, и дробить...».[20]
В истории педагогики достаточно широкое применение получила система математического развития детей М. Монтессори. Суть ее в том, что трехлетние дети умеют считать до двух или трех. Потом они легко учатся нумерации. Для обучения нумерации М. Монтессори использовала монеты. «...Размен денег представляет первую форму нумерации, довольно интересную для возбуждения живого внимания ребенка...».[12]
Далее она обучала с помощью методических упражнений, применяя как дидактический материал одну из систем, уже использованную в воспитании чувств, то есть серию из десяти брусков различной длины. Когда дети разложат бруски один за другим по их длине, им предлагают сосчитать красные и синие отметки. Теперь к упражнениям чувств для распознавания более длинных и более коротких брусков присоединяются упражнения в счете. Так происходило обучение математическим представлениям в «Доме ребенка» М. Монтессори.[12]
В 1968 году появилась и была апробирована на практике методика
Б.П. Никитина, который впервые призвал «заниматься с ребенком как можно раньше», то есть, как выражался этот замечательный педагог — «Своевременно!» Игры должны быть организованы так, чтобы развивать высочайший интеллект.
Известный психолог Прейнер в одном из своих исследований говорит, что «имея перед глазами группу предметов в числе трех, мы можем непосредственно узнать это число, не производя счета, и называет такой процесс условным выражением «бессознательный счет». Если же число предметов, находящихся перед глазами, превосходит этот ограниченный предел и если предметы размещены в ряд, то такое узнавание-схватывание числа их становится затруднительным и даже невозможным, вследствие чего мы ощущаем непреоборимую потребность прибегнуть к счету».[20]
Исходя из вышеуказанного, следует сказать, что счет необходим как один из процессов изучения чисел. Это видно из того, что его не отвергают и сторонники непосредственного восприятия чисел. Непосредственное восприятие числа опирается преимущественно на пространственные элементы, а счет — на временные элементы числа и действий над числами.
Что касается взгляда на число как результат измерения, то это тоже правильный взгляд, но он не исключает собою понятия о числе как результате счета, а лишь расширяет и углубляет понятие числа. Но как более трудный вид для понимания детей, чем предыдущий, он должен не предшествовать ему, а следовать за ним. Вопрос о числовых фигурах считается одним из опорных вопросов в методике арифметики.




    1. Download 232.51 Kb.

      Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2025
ma'muriyatiga murojaat qiling