From Wikipedia, the free encyclopedia Jump to navigationJump to search
Download 243.86 Kb.
|
Cone
- Bu sahifa navigatsiya:
- Equation form
Circular sector[edit]
The circular sector obtained by unfolding the surface of one nappe of the cone has: radius R {\displaystyle R={\sqrt {r^{2}+h^{2}}}} arc length L {\displaystyle L=c=2\pi r} central angle φ in radians {\displaystyle \phi ={\frac {L}{R}}={\frac {2\pi r}{\sqrt {r^{2}+h^{2}}}}} Equation form[edit] The surface of a cone can be parameterized as {\displaystyle f(\theta ,h)=(h\cos \theta ,h\sin \theta ,h),} where {\displaystyle \theta \in [0,2\pi )} is the angle "around" the cone, and {\displaystyle h\in \mathbb {R} } is the "height" along the cone. A right solid circular cone with height {\displaystyle h} and aperture {\displaystyle 2\theta } , whose axis is the {\displaystyle z} coordinate axis and whose apex is the origin, is described parametrically as {\displaystyle F(s,t,u)=\left(u\tan s\cos t,u\tan s\sin t,u\right)} where {\displaystyle s,t,u} range over {\displaystyle [0,\theta )} , {\displaystyle [0,2\pi )} , and {\displaystyle [0,h]} , respectively. In implicit form, the same solid is defined by the inequalities {\displaystyle \{F(x,y,z)\leq 0,z\geq 0,z\leq h\},} where {\displaystyle F(x,y,z)=(x^{2}+y^{2})(\cos \theta )^{2}-z^{2}(\sin \theta )^{2}.\,} More generally, a right circular cone with vertex at the origin, axis parallel to the vector {\displaystyle d} , and aperture {\displaystyle 2\theta } , is given by the implicit vector equation {\displaystyle F(u)=0} where {\displaystyle F(u)=(u\cdot d)^{2}-(d\cdot d)(u\cdot u)(\cos \theta )^{2}} or {\displaystyle F(u)=u\cdot d-|d||u|\cos \theta } where {\displaystyle u=(x,y,z)} , and {\displaystyle u\cdot d} denotes the dot product. Download 243.86 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling