Funksiya, funksiya ladi, funksiyaning xossalari, funksiya diferensiali


Download 0.49 Mb.
Sana05.05.2023
Hajmi0.49 Mb.
#1431443
Bog'liq
Yuqorida tartibli hosilalar, funksiyaning differensiali, geometrik ma’nosi, xossasi

Yuqorida tartibli hosilalar, funksiyaning differensiali, geometrik ma’nosi, xossasi

Funksiya hаqidа tushunchа vа uning tа`rifi

Funksiyaning bеrilish usullаri.

  • Funksiya shаrоitigа qаrаb jаdvаl, аnаlitik vа grаfik usullаr bilаn bеrilishi mumkin.
  • Funksiya jаdvаl usulidа bеrilgаndа, аrgumеntning mа`lum tаrtibdаgi х1, х2, х3,… хn,… qiymаtlаri vа funksiyaning ulаrgа mоs kеluvchi y1, y2, y3, … ,yn, … qiymаtlаri jаdvаl hоlidа bеrilаdi:

Х

х1

х2

х3



хn



Y

y1

y2

y3



yn


Yuqori tartibli hosilalar va differensiallar


Yuqori tartibli hosilalar va differensiallar

Funksiya differensiali, uning geometrik ma’nolari.

Differensialning geometrik ma’nosi

Faraz qilaylik y=f(x) funksiya biror (a,b) intervalda berilgan bo‘lsin. Bu funksiyaning dy=f’(x)dx differensiali x ga bog‘liq bo‘lib, dx=x va x orttirma x ga bog‘liq emas, chunki x nuqtadagi orttirmani x ga bog‘liq bo‘lmagan holda ixtiyoriy tanlash mumkin. Bu holda differensial formulasidagi dx ko‘paytuvchi o‘zgarmas bo‘ladi va f’(x)dx ifoda faqat x ga bog‘liq bog‘liq bo‘lib, uni x bo‘yicha differensiallash mumkin.

  • Faraz qilaylik y=f(x) funksiya biror (a,b) intervalda berilgan bo‘lsin. Bu funksiyaning dy=f’(x)dx differensiali x ga bog‘liq bo‘lib, dx=x va x orttirma x ga bog‘liq emas, chunki x nuqtadagi orttirmani x ga bog‘liq bo‘lmagan holda ixtiyoriy tanlash mumkin. Bu holda differensial formulasidagi dx ko‘paytuvchi o‘zgarmas bo‘ladi va f’(x)dx ifoda faqat x ga bog‘liq bog‘liq bo‘lib, uni x bo‘yicha differensiallash mumkin.
  • Demak, bu funksiyaning differensiali mavjud bo‘lishi mumkin va u, agar mavjud bo‘lsa, funksiyaning ikkinchi tartibli differensiali deb ataladi.

Differensial formasining invariantligi

Parametrik ko‘rinishda berilgan funksiya tushunchasi

Endi sistema bilan berilgan x va y larni Oxy tekislikdagi nuqtaning koordinatalari sifatida qaraymiz. U holda [,] kesmadan olingan t parametrning har bir qiymatiga tekislikda aniq bitta nuqta mos keladi. Agar x=(t), y=(t) funksiyalar t parametrning uzluksiz funksiyalari bo‘lsa, u holda (9.1) sistema tekislikda biror uzluksiz chiziqni ifodalaydi. Bu holda chiziq (9.1) parametrik tenglamalar bilan berilgan deyiladi. (9.1) sistemadagi tenglamalar shu chiziqning parametrik tenglamalari deyiladi.

  • Endi sistema bilan berilgan x va y larni Oxy tekislikdagi nuqtaning koordinatalari sifatida qaraymiz. U holda [,] kesmadan olingan t parametrning har bir qiymatiga tekislikda aniq bitta nuqta mos keladi. Agar x=(t), y=(t) funksiyalar t parametrning uzluksiz funksiyalari bo‘lsa, u holda (9.1) sistema tekislikda biror uzluksiz chiziqni ifodalaydi. Bu holda chiziq (9.1) parametrik tenglamalar bilan berilgan deyiladi. (9.1) sistemadagi tenglamalar shu chiziqning parametrik tenglamalari deyiladi.

Parametrik ko‘rinishda berilgan funksiyaning hosilasi

E’TIBORINGIZ UCHUN RAHMAT


Download 0.49 Mb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling