Funksiyaning ekstremumlari
- teorema(ikkinchi qoida)
Download 471.5 Kb.
|
- Bu sahifa navigatsiya:
- Funksiyalarning kesmadagi eng katta va eng kichik qiymatlari
2- teorema(ikkinchi qoida). f(x) funksiya (a, b) intervalda uzluksiz bo`lib , uning nuqtasida birinchi va ikkinchi tartibli hosilasi mavjud bo`lsin. 1) Agar va bo`lsa, u holda -maksimum nuqtasi bo`ladi; 2) Agar va bo`lsa, u holda minimum nuqtasi bo`ladi.
Funksiyalarning kesmadagi eng katta va eng kichik qiymatlari Ma`lumki, [a, b] kesmada uzluksiz bo`lgan funksiya shu kesmada o`zining eng katta va eng kichik qiymatlariga erishadi. Shu qiymatlarni qanday topish mumkin? Agar funksiya monoton bo`lsa (uning hosilasi o`z ishorasini saqlasa, ya`ni u yo manfiymas, yoki musbatmas bo`lsa), u holda funksiyaning eng katta va eng kichik qiymatlari [a, b] kesmaning oxirlarida -x=a va x=b nuqtalarda bo`ladi. Agar funksiya monoton bo`lmasa (ya`ni uning hosilasi ishorasini o`zgartirsa), u holda funksiya ekstremumlarga ega bo`ladi. Bu holda eng katta va eng kichik qiymatlar ekstremumlar bilan bir xil bo`lishi mumkin, ma`lumki, ekstremumlar kritik nuqtalarda bo`ladi. Shunday qilib, funksiyaning [a, b] kesmadagi eng katta va eng kichik qiymatlarini topish uchun: funksiyaning kritik nuqtalarini aniqlash; funksiyaning kritik nuqtalaridagi va kesmaning oxirlaridagi qiymatlarini hisoblash; topilgan qiymatlardan eng katta va eng kichik qiymatlarni tanlash kerak, ana shu qiymatlar funksiyaning [a, b] kesmadagi eng katta va eng kichik qiymatlarini ifodalaydi. 1-misol. funksiyaning [-2, 5] kesmadagi eng katta va eng kichik qiymatlarini aniqlang. Yechish. a) Kritik nuqtalarni topamiz: hosilani hisoblaymiz: tenglamani yechamiz: berilgan kesmaga faqat nuqta kiradi. b) Funksiyaning x=1, x=-2, x=5 nuqtalardagi qiymatlarini hisoblaymiz: v) topilgan qiymatlardan eng katta M ni va eng kichik m ni tanlaymiz : Shunday qilib, funksiyaning eng katta qiymati kesmaning x=5 o`ng oxirida ekan, eng kichik qiymati esa x=1 nuqtadagi minimum bilan bir xil ekan. 2-misol. Tomoni a ga teng bo`lgan kvadrat shakldagi kartondan asosi to`g`ri to`rtburchak shaklda bo`lgan eng katta hajmli usti ochiq quti tayyorlang. Yechish. Odatda, kvadrat shakldagi kartonning burchaklaridan teng kvadratlarni qirqib va uning chetlarini buklab, ochiq to`g`ri to`tburchak shakldagi quti yasaladi. Agar kesilgan kvadratlarning tomoni x desak, quti asosining tomoni a-2x, qutining balandligi esa x ga teng. U holda qutining hajmi bo`ladi. Masalaning shartidan ekani kelib chiqadi. Endi V funksiyani kesmada eng katta va eng kichik qiymatga sinash qoladi. ni topamiz, uni nolga tenglaymiz va kritik nuqtalarni aniqlaymiz : V funksiyaning nuqtalarda qiymatlarini hisoblaymiz: Shunday qilib, da funksiya eng katta qiymatga ega. Demak, eng katta hajm asos tomoni balandligi ga teng bo`lganda hosil bo`ladi. Download 471.5 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2025
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling