Global navigation sattelite system


Download 0.87 Mb.
Pdf ko'rish
bet6/6
Sana19.09.2017
Hajmi0.87 Mb.
#16026
1   2   3   4   5   6

Т

 is a time from the epoch 5 January 1900 (GMT) to time reference t

of 


ephemeris parameters (in Julian centuries of 36525 ephemeris days); 

27392.375 is a number of days from the epoch 5 January 1900 to the epoch 0 

January 1975 (Moscow Time or MT) taking into account the three-hour offset 

between MT and GMT when re-computing t

e

 into GMT; 



Σ

days 


- sum of days from the epoch at 00 hours MT on 0 January 1975 to the 

epoch at 00 hours MT of current date within which the instant t

e

 is. 


 

Coordinates X(t

e

), Y(t


e

), Z(t


e

) and velocity vector components V

x

(t

e



) , V

y

(t



e

), 


V

z

(t



e

) are initial conditions for integration of the system (1); they are taken from a 

navigation message and then re-computed from Greenwich coordinate system (PZ-

90.02) to an absolute coordinate system OX

a

Y

a



Z

a

 using the following formulae: 



 

X

o



(t

е

) = x(t



е

) cosS(t


е

) - y(t


е

) sinS(t


е

), 


Y

o

(t



е

) = x(t


е

) sinS(t


е

) + y(t


е

) cosS(t


е

), 


Z

o

(t



е

) = z(t


е

), 


Vx

o

(t



е

) = Vx(t


е

) cosS(t


е

) - Vy(t


е

) sinS(t


е

) - ω


з

 Y

o



(t

е

), 



Vy

o

(t



е

) = Vx(t


е

) sinS(t


е

) + Vy(t


е

) cosS(t


е

) + ω


з

 X

o



(t

е

), 



Vz

o

(t



е

) = Vz(t


е

), 


S(t

е

) = s + ω



з

 ( t


е

 – 3


h

 ) 


Where: 

 

ω



E

- Earth's rotation rate (0.7292115 

 10


-4

 s

-1



); 

Edition 5.1 2008                                                              ICD L1, L2 GLONASS 

Russian Institute of Space Device Engineering

 

 

s - true sidereal time at midnight GMT of a date within which the instant t



e

 is 


specified. 

 

After integration received in an absolute system of units of co-ordinates 



OX

0

Y

0

Z

0

  of co-ordinate X

o

  (t



i

),  Y

o

  (t



i

),  Z

o

  (t



i

) and components of velocity vector of 

space vehicle Vx



o

  (t



i

),  Vy

o

  (t



i

),  Vz

o

  (t



i

) can be translated in an earth-referenced 

Greenwich geocentric conception of co-ordinates ПЗ-90-02 Oxyz under formulas: 

 

x(t


i

) =  X


o

(t

i



) cosS(t

i

) + Y



o

(t

i



) sinS(t

i

), 



y(t

i

) = -X



o

(t

i



) sinS(t

i

) + Y



o

(t

i



) cosS(t

i

), 



z(t

i

) =  Z



o

(t

i



), 

Vx(t


i

) =  Vx


o

(t

i



) cosS(t

i

) + Vy



o

(t

i



) sinS(t

i

) + ω



з

 Y(t


i

), 


Vy(t

i

) =-Vx



o

(t

i



) sinS(t

i

) + Vy



o

(t

i



) cosS(t

i

) - ω



з

 X(t


i

), 


Vz(t

i

) =  Vz



o

(t

i



), 

S(t


i

) = s + ω

з

 ( t


i

 – 3


h

 ). 


 

 

Notes: 



 

Accelerations Jx

a

s, Jx


a

m, Jy


a

s, Jy


a

m, Jz


a

s, Jz


a

m in equation (1) can be either 

adopted constant and computed once per an instant te using the formulae (2) or 

excluded from (1) and then added the results of integration of corrections: 

 

Δ

X   = ( JX



a

m + JX


a

s ) * 


τ

2

/2, 



Δ

Y  = ( Jy

a

m + Jy


a

s ) * 


τ

2

/2,  



Δ

Z   = ( Jz

a

m

 + 



Jz

a

s ) 



τ

2

/2 



Δ

Vx = ( JX



a

m + JX


a

s ) * 


τ

 ,     


Δ

Vy = ( Jy

a

m + Jy


a

s ) * 


τ

 ,    


Δ

Vz =( Jz


a

m

 + 



Jz

a

s ) 



τ

 , 


 

where    

τ = t

i

 - t



e

 



2. Directive cosines 

ξ

k



 , 

η

k



 , 

ζ

k



  can be computed using the formulae (3) or taken 

from an external source. 

 

The origin of Greenwich (right-hand) coordinate system is in the center of Earth's 



body; OZ-axis is directed to northern pole along Earth's rotation axis; OX- axis is 

directed to the point of intersection of Greenwich meridian and equatorial plane. 

 

If to exclude lunar-solar accelerations when integrating system (1)  and take into 



them account by addition of them to the results of integration 

 

Δ



X   = ( JX

a

m + JX



a

s ) * 


τ

2

/2,   



Δ

Y  = ( Jy

a

m + Jy


a

s ) * 


τ

2

/2,  



Δ

Z  = ( Jz

a

m

 + 



Jz

a

s ) 



τ

2

/2 





Edition 5.1 2008                                                              ICD L1, L2 GLONASS 

Russian Institute of Space Device Engineering

 

 

Δ



Vx = ( JX

a

m + JX



a

s ) * 


τ

 ,      


Δ

Vy = ( Jy

a

m + Jy


a

s ) * 


τ

 ,     


Δ

Vz = ( Jz

a

m

 + 



Jz

a

s )



τ

 , 


 

then increasing, due to this, of ephemeris extrapolation errors does not exceed 

10%. Here (JX

a

m + JX



a

s), (Jy


a

m + Jy


a

s) , (Jz


a

m

 + 



Jz

a

s) are projection of lunar-solar 



accelerations to axes of OX

a

Y



a

Z

a



 system at instant t

e

 to which ephemeris parameters 



are referenced, they are computed using the formulae (2). 

 

To calculate ephemeris parameters at instant t



j

 the projections of lunar-solar 

accelerations to axes of Greenwich geocentric coordinate system X

″(t


e

), Y


″(t

e

), Z



″(t

e



can be used; they are transmitted within navigation message. Prior to the integration 

of the system (1) these accelerations should be transformed into an absolute Cartesian 

geocentric coordinate system OX

a

Y



a

Z

a



 using the following formulae: 

 

(JX



a

m + JX


a

s) = X


″(t

e



 cos S - Y

″(t

e



 sin S , 

(Jy

a

m + Jy



a

s) = X


″(t

e



 sin S + Y

″(t

e



 cos S , 

(Jz

a

m



 + 

Jz

a



s) = Z

″(t


e

 



An accuracy of ephemeris data multiplication is given in the following table: 

Step of integration, 

minutes 

Interval of integration 

 

5 minutes 



10 minutes 

15 minutes 

  1 

0.42 


0.56 

0.77 


  2.5 

0.42 


0.56 

0.77 


  5 

0.45 


0.61 

0.83 


  7.5 



1.21 

 


Edition 5.1 2008                                                              ICD L1, L2 GLONASS 

Russian Institute of Space Device Engineering

 

 

A.3.1.2.Simplify of algorithm for re-calculation of ephemeris to current time 



 

Re-calculation  of ephemeris within the interval of measurement is performed 

using technique of numerical integration of differential equations that describe 

motion of the satellites in coordinate system PZ -90.02: 

dx dt Vx

/

=



 

dy dt Vy


/

=

 



dz dt Vz

/

=



 

dV

dt

x

J

a

r

x

z

r

x

V

x

x

r

e

y

/

&&



= −





⎟ +



+

+

μ



μ

ω

ω



3

3

2



1

5

2



0

2

2



5

2

2



2

 

dV



dt

y

J

a

r

y

z

r

y

V

y

y

r

e

x

/

&&



= −





⎟ +



+

+

μ



μ

ω

ω



3

3

2



1

5

2



0

2

2



5

2

2



2

 

dV



dt

z

J

a

r

z

z

r

z

z

r

e

/

&&



= −





⎟ +



μ

μ

3



3

2

1



5

0

2



2

5

2



2

 

 



where: 

 

r



x

y

z



=

+

+



2

2

2



;

 

 



μ= 398600.44*109 m3 / s2 - Gravitational constant; 

ae= 6 378 136 m- Semi-major axis of Earth ; 

J02= 1082625.7  10 –9 – Second zonal harmonic of the geopotential; 

ω=  7.292115  10 -5  radian/s  - Earth rotation rate. 

Initial conditions of integration of reduced equations set are co-ordinates and 

components of velocity vector of n th SV x



n

(t

b

), y

n

(t

b

), z

n

(t

b

), x’

n

(t

b

) = Vx, y’

n

(t

b

) = Vy, 

z’

n

(t

b

) = Vz. 

 

Accelerations due to lunar-solar gravitational perturbation 



&& ( ),&& ( ),&& ( )

x t


y t

z t


n

b

n



b

n

b



 

are constant in the integration interval  

±15 minutes. 

 

 



A.3.1.3. Transformation of GLONASS-M current data information into 

common form 

 

Satellite navigation message contains current data information in N



T

 parameter. 

It could be transformed into the common form by the following algorithm: 

1). Current year number 



J

 in the four-year interval is calculated: 

If 1 

≤ N


T

 

≤ 366;  J = 1; 



Edition 5.1 2008                                                              ICD L1, L2 GLONASS 

Russian Institute of Space Device Engineering

 

 

If 367 



≤ N

T

 



≤ 731; J = 2; 

If 732 


≤ N

T

 



≤ 1096; 

J = 3; 


If 1097 

≤ N


T

 

≤ 1461; 



J = 4. 

2). Current year in common form is calculated by the following formula: 



Y

 = 1996 + 4*(N

4

 –1) + (


J – 

1

).

 

 

3). Current day and month (dd/mm) are extracted from the reference table 



stored in user equipment ROM. The table interrelates NT parameter  and common 

form dates. 

 

For example, meaning N



Т

 = 839 then according to algorithm point 1 we 

discover meaning J, it will be equal 3. 

Further from a navigational frame we take meaning N

4

, we will accept it 



equally 2. 

 

And now we compute a value Y - current year in the conventional form: 



 

Y = 1996 + 4 * ( 2 – 1 ) + ( 3 – 1 ) = 1006 + 4 * 1 + 2 = 1996 + 4 + 2 = 2002 



Edition 5.1 2008                                                              ICD L1, L2 GLONASS 

Russian Institute of Space Device Engineering

 

 

 



A.3.2 Algorithm of calculation of satellite motion parameters using almanac 

 

The algorithm is used when selecting optimal constellation, calculating satellite 



position to provide acquisition and tracking the selected satellite. The algorithm 

allows calculating the coordinates and velocity vector components of a satellite at 

instant of acquisition t

i

 



 

A.3.2.1 Almanac data 

 

GLONASS almanac contains orbital parameters specified for each satellite at 



an instant t

λ

j  



A list of the parameters for each satellite is as indicated below: 

 

N



Aj

 

-  Calendar number of a day within four-year interval starting from 



latest leap year; almanac data for j-satellite are referenced to N

Aj



λ

j

 



-  Greenwich longitude of ascending node of orbit of j-satellite at 

instant t

λ

j

 



(in radians); 

t

λ



j

 

-  An instant of a first ascending node passage of j-satellite within N



Aj

 – 


day (in seconds); 

Δ

i



j

 

-  Correction to the mean value of inclination of j-satellite at instant t



λ

(mean value of inclination is equal to 63



°); 

Δ

Tj 



-  Correction to the mean value of Draconian period of j-satellite at 

instant t

λ



(mean value of Draconian period T is equal to 43200 



seconds); 

Δ

Т



j

 



-  Rate of change of orbital period for j-satellite; 

ε

j



 

-  Eccentricity of j-satellite orbit at instant t

λ

j

 ; 



ω

j

 



-  Argument of perigee of j-satellite orbit at instant t

λ



 (in radians). 

λ

 - Index of an accessory of parameters АС By time of passing of an ascending 



node of an orbit t

λ

j

, and j - number SV (= 1......, 24). Further the index j is omitted. 

Average values of obliquity of orbital plane SV GLONASS system i



ср

 a period 

of revolution Т

ср

. Make 63

° and 43200 with, accordingly. 

The gang of orbit parameters for everyone SV is set in the Greenwich 

geocentric conception of co-ordinates OXYZ "frozen" during the moment t 

λ

The system beginning is combined with a centre of mass of the Earth. The Z-



axis is routed to a mean northern pole for a mean epoch of 1900-1905 of, shaft OX 

lies in a plane of terrestrial equator of an epoch of 1900-1905 of, plane XOZ is thus 

parallel to mean Greenwich meridian and determines a rule of a zero-mark of the 

count system of longitudes, shaft OY adds system to the right. 

 

A.3.2.2 Algorithm of calculation 



Edition 5.1 2008                                                              ICD L1, L2 GLONASS 

Russian Institute of Space Device Engineering

 

 

 



Calculation of satellite and velocity vector components at instant t

i

 (MT) of a 



day N

0

 within four-year interval, and in absolute geocentric coordinate system 



OX

a

Y



a

Z

a



 (which origin and Z-axis coincide with origin and Z-axis of OXYZ system, 

offset between XOZ-plane and X

a

OZ

a



 is equal to true sidereal time, and OY

a

 - axis 



completes the system to the right-handed one) is performed in two steps. 

At the first step the time t

k

 of ascending node passage at k-orbital period and 



corresponding longitude 

λ

k



 are calculated using the almanac parameters 

Δ

Т, 



Δ

Т' and 


λ

. Here the specified instant t

i

 is within the following interval: (t



i

 - t


k

 < T


mean

 + 


Δ

Т). 


Other parameters are assumed constant and equal to the corresponding parameters of 

almanac. 

Then osculating elements are re-computed from the instant t

k

 to the instant t



i

 

using analytic formulae and taking into account secular and periodic perturbations of 



the orbital elements caused by second zonal harmonic C

20



Then the osculating elements at instant t

i

 are transformed into kinematic 



parameters, as indicated below. 

 

semi-major axis "a" of orbit is calculated using technique of successive 



approximations: 

        


3

2

)



1

(

)



1

(

2



μ

π



⎟⎟



⎜⎜



=

+

+



n

оск

n

T

а

(



)

(

)



(

)

1



2

3

2



2

3

2



2

2

)



(

20

)



1

(

1



cos

1

cos



1

1

sin



2

5

2



2

3

1



+

⎪⎭





⎪⎩







+

+



+









⎟⎟



⎜⎜





+

=



e

e

e

e

i

p

a

С

T

T

n

e

др

n

оск

υ

ω





p

(n) 

 = 


)

(n



a

 ( 1 – e


) ,         n = 0, 1, 2,…, 

 

where   


υ

 = -


ω

,   i= i


ср

+

Δ



i   and   Т

др

 = Т



ср

 + 


Δ

Т . 


An initial approximation 

)

0



(

a

3



2

2

μ



π

⎟⎟



⎜⎜





др

T

The process of approximation ends when fulfilling the following condition: 



         

км

a

a

n

n

3

)



(

)

1



(

10



+

<



Usually it is enough to make three iterations for it. 

 

The time t



k

 of ascending node passage on k-orbital period (within which the 

instant t

i

 is located) and respective longitude 



λ

are calculated: 



t

λκ

 = [



λκ

t

]

mod 86400 



,

'



2

W

T

W

T

t

t

др

Δ



+

+



=

λ

λκ



   

W

k



 = 

др

T

t

*

,   W – hole part  W



k

  , 


Edition 5.1 2008                                                              ICD L1, L2 GLONASS 

Russian Institute of Space Device Engineering

 

 

)



(

86400


0

A

i

N

N

t

t

t



+

=



λ



(

)

(



)

2

'



'

W

T

W

T

др

з

k

Δ



+



Ω

+



=

ω

λ



λ

(



)

2

2



2

20

1



cos

2

3



'









=

Ω



e

i

a

a

n

C

e



др



T

n

π

2



=

 , 


S

k

+

=



Ω

λ

 , 



)

10800


(

0



+

=



k

З

t

S

S

λ

ω



 

Where: 



С

20

 – Second zonal harmonic of geopotential (-1082.63 * 10



-6

); 


a

е 

– Equatorial radius of Earth (6378.136 km); 



S

0

 – True sidereal time at Greenwich midnight on day N

0

, within which the 



instant t

is located; 



ω

з

 – Earth's rotation rate (0.7392115 * 10



-4 

 s

-1



); 

μ

- Gravitational constant (398600.44 km



3

 / s


2

). 


 

3) Constant parameters of integration at the instant t

λ



 are computed: 



a

a

m)

(

δ



 = 2J

2







a



a

е





⎛ −

i

2

sin



2

3

1



(

)

λ



λ

sin


cos

+





h

l

 + J


2







a

a

е



i

2

sin


 





+



+

+





λ

λ

λ



λ

λ

3



sin

2

7



3

cos


2

7

2



cos

cos


2

1

sin



2

1

h



l

l

h



⎥⎦

⎢⎣





+

+







⎛ −






=

λ

λ



λ

τ

δ



2

cos


2

3

2



sin

2

3



sin

sin


2

3

1



2

2

)



(

h

l

n

l

i

a

a

J

h

е

m

 

+



⎥⎦

⎢⎣



+



+



+







λ

λ



λ

λ

λ



λ

2

cos



4

cos


2

17

4



sin

2

17



2

sin


5

3

sin



3

7

sin



sin

4

1



2

2

h



h

l

l

i

a

a

J

е

 













λ

τ

2



sin

2

1



cos

2

2



l

n

l

i

a

a

J

е

)



(m

l

δ

=J



2







a

a

е





⎛ −

i

2

sin



2

3

1



⎥⎦



⎢⎣



+

+



+



λ

λ



λ

τ

2



sin

2

3



2

cos


2

3

cos



h

l

n

h

 

+



⎥⎦

⎢⎣



+











λ



λ

λ

λ



λ

λ

2



cos

4

sin



2

17

4



cos

2

17



2

sin


5

3

cos



3

7

cos



sin

4

1



2

2

l



h

l

h

i

a

a

J

е

 







+







λ

τ



2

sin


2

1

cos



2

2

h



n

h

i

a

a

J

е

 







+





+







=

Ω



λ

λ

λ



λ

λ

τ



δ

3

cos



6

7

3



sin

6

7



2

sin


2

1

cos



2

5

sin



2

7

cos



2

)

(



h

l

h

l

n

i

a

a

J

е

m







+

+



+

+









=

λ

λ



λ

λ

λ



δ

3

sin



3

7

3



cos

3

7



2

cos


sin

cos


cos

sin


2

1

2



)

(

h



l

h

l

i

i

a

a

J

i

e

m



Edition 5.1 2008                                                              ICD L1, L2 GLONASS 

Russian Institute of Space Device Engineering

 

 







+







+





⎛ −







=

i

a

a

J

h

l

n

i

a

a

J

e

e

m

2

2



2

2

)



(

sin


3

cos


4

7

sin



4

7

sin



2

3

1



2

λ

λ



τ

λ

δ



 





+







+

+







i

a

a

J

l

h

l

h

e

2

2



cos

2

sin



4

1

3



sin

72

49



3

cos


72

49

sin



24

7

cos



24

7

λ



λ

λ

λ



λ

 







+





+



λ

λ

λ



λ

λ

τ



3

cos


6

7

3



sin

6

7



2

sin


2

1

cos



2

5

sin



2

7

h



l

h

l

n

,                 (1) 

 

where:   



λ

= M + 


ω

,       M = E – e sinE ,       tg

2

E

2



1

1

υ



tg

e

e

+



 , 

h = e sin

ω

,  l= e cos



ω

,  m=1,  

τ

= 0,  J = -



2

3

C



20

,  a = a

(n)

  (1). 


4) Corrections to orbital elements at instant t

i

 due to effect of C



20

 are computed: 

 

)

1



(

)

2



(

a

a

a

δ

δ



δ

=



,                        

)

1



(

)

2



(

Ω



Ω

=

Ω



δ

δ

δ



)

1



(

)

2



(

h

h

h

δ

δ



δ

=



,                        

δ

i = 



δ

i

)



2

(



δ

i

)



1

(

 , 



)

1

(



)

2

(



l

l

l

δ

δ



δ

=



,                         

)

1



(

)

2



(

*

λ



δ

λ

δ



δλ

=



 

Parameters 



)

2

(



)

2

(



)

2

(



)

2

(



)

2

(



)

2

(



,

,

,



,

λ

δ



δ

δ

δ



δ

δ

и



i

l

h

a

Ω

 are computed for 



τ = t

i

 - t



λ

k

 and m =2 



using the formulae (1), where  

τ

ω



λ

+



+

=

n



M

 



 

Perturbing orbital elements of satellites at instant t

i

 are computed: 



             

h

h

h

i

δ

+



=



l



l

l

i

δ

+



=

2



2

i

i

i

l

h

+

=



ε

⎟⎟



⎜⎜





i



i

l

h

arctg

  ,            and 

ε

i

 



0 and 


0



i



l

 0 ,                          and   



ε

=0 , 



=

i

ω

                   



2

π

,                  and 



ε

i

 



0  and h


ε



i , 

 -

2



π

,                  if 

ε

i

 



0  and h


i

 = - 


ε

i , 


 

a

i



 = a + 

a

δ



i

i

 = i + 



δ

i , 


Ω

+

Ω



=

Ω

δ



i

M



i

 = 


i

ω

λ



*

 ,   



*

*

)



(

δλ

ω



λ

λκ

+



+



+

=

t



t

n

M

i

 



Here "i" indicates reference to instant t

i



Edition 5.1 2008                                                              ICD L1, L2 GLONASS 

Russian Institute of Space Device Engineering

 

 

 



Coordinates and velocity vector components at instant ti in OXaYaZa 

coordinate system are computed: 

 

)

1



(

)

(



sin

+



=

n

i

i

i

n

i

E

M

E

ε

 





i

i

M

E

=

)



0

(

 , 



8

)

1



(

)

(



10



<



n



i

n

i

E

E

 , 


2

1

1



2

)

(n



i

i

i

i

E

tg

tg



+

=

ε



ε

υ



u

i = 


i

i

ω

υ



+

r



i

 = a


(1 – 


ε

cos



)

(n



i

E

), 


2

1

sin



i

i

i

i

i

a

Vr

ε

υ



ε

μ



=



2

1

cos



1

i

i

i

i

i

a

Vu

ε

υ



ε

μ



+

=



 

(



)

i

i

i

i

i

i

oi

i

u

u

r

X

cos


sin

sin


cos

cos


Ω



Ω



=

(



)

i

i

i

i

i

i

i

i

u

u

r

Y

o

cos


cos

sin


sin

cos


Ω



+

Ω



=



i



i

i

i

i

u

r

Z

sin


sin



=

 



(

)

(



)

i

i

i

i

i

i

i

i

i

i

i

i

i

i

u

u

Vu

i

u

u

Vr

Vx

o

cos


sin

cos


cos

sin


cos

sin


sin

cos


cos

Ω



+

Ω





Ω



Ω

=



(

)



(

)

i



i

i

i

i

i

i

i

i

i

i

i

i

i

u

u

Vu

i

u

u

Vr

Vy

o

cos


cos

cos


sin

sin


cos

cos


sin

sin


cos

Ω



Ω





Ω

+



Ω

=





i

i

i

i

i

i

i

i

u

Vu

i

u

Vr

Vz

o

sin


cos

sin


sin



+



=



Edition 5.1 2008                                                              ICD L1, L2 GLONASS 

Russian Institute of Space Device Engineering

 

 

A 3.2.3 the Instance of calculation of co-ordinates and components 



of velocity vector SV according to system GLONASS almanac

 

1) AC SVof system GLONASS Is set: 

 

N

Aj



 = 

615 


Date 

06.09.2001 

λ

j

 =  -0.189986229 



Half 

cycle 


t

λ

j



 = 

27122.09375 

seconds 

Δ

i



j

 = 


0.011929512 

Half 


cycle 

Δ

T



j

 =  -2655.76171875 

seconds 

Δ

Т



j

  = 0.000549316 



Secjnds/cycle

2

 



ε

j

 = 



0.001482010 

 

ω



j

 = 


0.440277100 

Half 


cycle 

 

It is necessary to calculate co-ordinates and components of velocity vector in 



co-ordinate system OX

o

Y

o

Z

o

 on an instant: 

 

N

Aj



 = 

615 


 

date 


06.09.2001 

 

t



λ

j

 = 



33300. 

seconds 


S

0

 = 6.02401539573 



rad 

 

Outcome: Coordinates and components of velocity vector SV in co-ordinate 



system OX

o

Y

o

Z

o

 on an instant 



t

λ

j 

dates 

N

Aj

 



X

oi

 = 



10947.021572  кm 

Y

o



i = 13078.978287  кm 

Z

o



i = 

18922.063362  кm 

Vx

o

i =  -3.375497 



m/s 

Vy

o



i =  -0.161453 

Кm/s 


Vz

o

i =  2.060844 



Кm/s 

Edition 5.1 2008                                                              ICD L1, L2 GLONASS 

Russian Institute of Space Device Engineering

 

 

 



Numbers of pages / numbers of 

partitions 

changed substitute

new except



ed 

In total 

pages in 

doc. 


number 

deed 


Entering № 

the Covering 

note doc. 

And date 

Signat

ure 


Date 

Partitions: 

Signature 

lists; 


Section 2; 

Section 


3.3.1.2; 

Section 


3.3.3; 

Section 


3.3.4; 

application 



   75   

    


 

On all problems linked with ICD of GLONASS system, you can revert in the 

Russian institute of space device engineering. 

e-mail:   contact@rniikp.ru  

Internet: 

http://www.rniikp.ru



 

 

 



© 2008  Russian institute of space devise engineering 

Download 0.87 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling