Hamza Xudoyberdiyev
Download 94.03 Kb.
|
Hamza Xudoyberdiyev
5. 44…4+11…1-66…6 son natural sonnning kvadrati bo’lishi mumkinmi? Bu yerda (2002 ta 4, 1001 ta 1, 1000 ta 6) Yechish:
44….4+11…1-66….6= (4/9)*(102000-1)+(1/9)* * (101001-1)-(6/9)*(101000-1)= (4/9)*102000-(4/9)+(1/9)* * 101001-(1/9)-(6/9)*101000+(6/9)= (4/9)*102000)+(4/9)* * 101000+(1/9)=(1/9)*( 4*102000+4* 101000+1)= (1/9)*(2*101000+1)2=((2*101000+1)/3)2 2*101000+1 sonnig yig’indisi 3 ga teng. Demak bu son 3 ga ham bo’linadi va natural sonning kvadrati bo’la oladi. va sonlarini taqqoslang. Birinchi usul: Ikkala sonni farqini aniqlaymiz: () - ()= =-= =>0 demak birinchi ifoda ikkinchi ifodadan katta. Ikkinchi usul: n=2005 deb belgilash kiritsak u holda A= va B=sonlarini taqqoslash kerak. Bularni kvadratga ko’tarsak: A2=2n+1++2 B2=2n+1++ 2 Bundan ()2=n(n+1)+(n+1) > (n+1)n+=()2, bu yerda > shuningdek > birinchi sonnig kvadrati ikkinchi sonnig kvadratidan katta . DemakA>B 6. x2-6xy+13y2=100 tenglamani butun sonlarda yeching. x2-6xy+13y2-100=0 x2-6xy+(13y2-100)=0 x ga nisbatan yechamiz:x1,2= x1,2= x1,2= = haqiqiy sonlar maydonida yechimga ega bo’ladi agar 25-y20 bo’lsa. 25-y20 y2 25 y2 y=0 da x1=10 x2=-10 y1=0 y2=0 y=3 da x3=17, x4=1 y3=3, y4=3 y=-3 da x5=-17, x6=-1 y5=-3, y6=-3 y=4 da x7=18 , x8=6 y7=4 ,y8=4 y=-4 da x7=-18 , x8=-6 y7=-4 ,y8=-4 y=5 da x11=15 , x12=15 y11=5 ,y12=5 y=-5 da x11=-15 , x12=-15 y11=-5 ,y12=-5 Download 94.03 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2025
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling