High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ
Fig. 6 | Electronic structure of monolayer Bi-2212 in the Mott insulating
Download 5.82 Mb. Pdf ko'rish
|
nature-s41586-019-1718-x
Fig. 6 | Electronic structure of monolayer Bi-2212 in the Mott insulating
regime. a, Spatially averaged differential conductance spectra of monolayer Bi-2212 obtained between vacuum annealing cycles. The annealing temperature is marked on each curve. The spectrum labelled ‘Initial’ was recorded before annealing. The as-exfoliated monolayer (obtained from OD55 crystal) was initially over-doped. The annealing cycles progressively lower its doping level and eventually make the specimen extremely under-doped. b, Representative tunnelling spectra of the extremely under-doped monolayer in a. Inset: tunnelling conductance maps recorded at tunnelling biases of 0.2 V (upper panel) and 1.6 V (lower panel). Crosses mark the positions where the spectra are taken. Spectra are shifted vertically for clarity. 8 | Nature | www.nature.com Article indicate that the dimensionality effect, if it exists at all, does not play an important role in the transition from Mott to pseudogap phase in Bi-2212. Online content Any methods, additional references, Nature Research reporting summa- ries, source data, extended data, supplementary information, acknowl- edgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-019-1718-x. 1. Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966). 2. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973). 3. Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 (2017). 4. Uchihashi, T. Two-dimensional superconductors with atomic-scale thickness. Supercond. Sci. Technol. 30, 013002 (2017). 5. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015). 6. Chakravarty, S., Sudbø, A., Anderson, P. W. & Strong, S. Interlayer tunneling and gap anisotropy in high-temperature superconductors. Science 261, 337–340 (1993). 7. Anderson, P. W. Interlayer tunneling mechanism for high-T c superconductivity: comparison with c axis infrared experiments. Science 268, 1154–1155 (1995). 8. Leggett, A. J. WHERE is the energy saved in cuprate superconductivity? J. Phys. Chem. Solids 59, 1729–1732 (1998). 9. Kresin, V. Z. & Morawitz, H. Layer plasmons and high-T c superconductivity. Phys. Rev. B 37, 7854–7857 (1988). 10. Lee, P. A. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006). 11. Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012). 12. Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457–482 (2015). 13. Rajasekaran, S. et al. Probing optically silent superfluid stripes in cuprates. Science 359, 575–579 (2018). 14. Gerber, S. et al. Three-dimensional charge density wave order in YBa 2 Cu 3 O 6.67 at high magnetic fields. Science 350, 949–952 (2015). 15. Bluschke, M. et al. Stabilization of three-dimensional charge order in YBa 2 Cu 3 O 6+x via epitaxial growth. Nat. Commun. 9, 2978 (2018). 16. Hepting, M. et al. Three-dimensional collective charge excitations in electron-doped copper oxide superconductors. Nature 563, 374 (2018). 17. Schneider, T. Dimensional crossover in cuprate superconductors. Z. Phys. B Condens. Matter 85, 187–195 (1991). 18. Fischer, Ø., Kugler, M., Maggio-Aprile, I., Berthod, C. & Renner, C. Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 79, 353–419 (2007). 19. Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003). 20. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62, 61–122 (1999). 21. Schmidt, A. R. et al. Electronic structure of the cuprate superconducting and pseudogap phases from spectroscopic imaging STM. New J. Phys. 13, 065014 (2011). 22. McElroy, K. et al. Atomic-scale sources and mechanism of nanoscale electronic disorder in Bi 2 Sr 2 CaCu 2 O 8+δ . Science 309, 1048–1052 (2005). 23. Kohsaka, Y. et al. How Cooper pairs vanish approaching the Mott insulator in Bi 2 Sr 2 CaCu 2 O 8+δ . Nature 454, 1072–1078 (2008). 24. McElroy, K. et al. Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi 2 Sr 2 CaCu 2 O 8+δ . Nature 422, 592–596 (2003). 25. Hoffman, J. E. et al. Imaging quasiparticle interference in Bi 2 Sr 2 CaCu 2 O 8+δ . Science 297, 1148–1151 (2002). 26. Hanaguri, T. et al. Quasiparticle interference and superconducting gap in Ca 2−x Na x CuO 2 Cl 2 . Nat. Phys. 3, 865–871 (2007). 27. Lang, K. M. et al. Imaging the granular structure of high-T c superconductivity in underdoped Bi 2 Sr 2 CaCu 2 O 8+δ . Nature 415, 412 (2002). 28. Hanaguri, T. et al. A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca 2−x Na x CuO 2 Cl 2 . Nature 430, 1001–1005 (2004). 29. daSilva Neto, E. H. et al. Ubiquitous interplay between charge ordering and high- temperature superconductivity in cuprates. Science 343, 393–396 (2014). 30. Comin, R. et al. Charge order driven by Fermi-arc instability in Bi 2 Sr 2−x La x CuO 6+δ . Science 343, 390–392 (2014). 31. Hamidian, M. H. et al. Detection of a Cooper-pair density wave in Bi 2 Sr 2 CaCu 2 O 8+x . Nature Download 5.82 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling