High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ
Download 5.82 Mb. Pdf ko'rish
|
nature-s41586-019-1718-x
532, 343–347 (2016).
32. Ruan, W. et al. Visualization of the periodic modulation of Cooper pairing in a cuprate superconductor. Nat. Phys. 14, 1178 (2018). 33. Mesaros, A. et al. Commensurate 4a 0 -period charge density modulations throughout the Bi 2 Sr 2 CaCu 2 O 8+x pseudogap regime. Proc. Natl Acad. Sci. USA 113, 12661–12666 (2016). 34. Cai, P. et al. Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates. Nat. Phys. 12, 1047–1051 (2016). 35. Kohsaka, Y. et al. Visualization of the emergence of the pseudogap state and the evolution to superconductivity in a lightly hole-doped Mott insulator. Nat. Phys. 8, 534–538 (2012). 36. Alldredge, J. W. et al. Evolution of the electronic excitation spectrum with strongly diminishing hole density in superconducting Bi 2 Sr 2 CaCu 2 O 8+δ . Nat. Phys. 4, 319–326 (2008). 37. Gozar, A. et al. High-temperature interface superconductivity between metallic and insulating copper oxides. Nature 455, 782–785 (2008). 38. Bollinger, A. T. & Božović, I. Two-dimensional superconductivity in the cuprates revealed by atomic-layer-by-layer molecular beam epitaxy. Supercond. Sci. Technol. 29, 103001 (2016). 39. Terashima, T. et al. Superconductivity of one-unit-cell thick YBa 2 Cu 3 O 7 thin film. Phys. Rev. Lett. 67, 1362–1365 (1991). 40. Frindt, R. F. Superconductivity in ultrathin NbSe 2 layers. Phys. Rev. Lett. 28, 299–301 (1972). 41. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005). 42. Ajayan, P., Kim, P. & Banerjee, K. Two-dimensional van der Waals materials. Phys. Today 69, 38–44 (2016). 43. Sandilands, L. J. et al. Origin of the insulating state in exfoliated high-T c two-dimensional atomic crystals. Phys. Rev. B 90, 081402(R) (2014). 44. Jiang, D. et al. High-T c superconductivity in ultrathin Bi 2 Sr 2 CaCu 2 O 8+x down to half-unit- cell thickness by protection with graphene. Nat. Commun. 5, 5708 (2014). 45. Zaanen, J., Sawatzky, G. A. & Allen, J. W. Band gaps and electronic structure of transition- metal compounds. Phys. Rev. Lett. 55, 418–421 (1985). 46. Presland, M. R., Tallon, J. L., Buckley, R. G., Liu, R. S. & Flower, N. E. General trends in oxygen stoichiometry effects on T c in Bi and Tl superconductors. Physica C 176, 95–105 (1991). 47. Huang, Y. et al. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9, 10612–10620 (2015). 48. Bollinger, A. T. et al. Superconductor–insulator transition in La 2−x Sr x CuO 4 at the pair quantum resistance. Nature 472, 458–460 (2011). 49. Leng, X., Garcia-Barriocanal, J., Bose, S., Lee, Y. & Goldman, A. M. Electrostatic control of the evolution from a superconducting phase to an insulating phase in ultrathin YBa 2 Cu 3 O 7−x films. Phys. Rev. Lett. 107, 027001 (2011). 50. Ando, Y., Komiya, S., Segawa, K., Ono, S. & Kurita, Y. Electronic phase diagram of high-T c cuprate superconductors from a mapping of the in-plane resistivity curvature. Phys. Rev. Lett. 93, 267001 (2004). 51. Ruan, W. et al. Relationship between the parent charge transfer gap and maximum transition temperature in cuprates. Sci. Bull. (Beijing) 61, 1826–1832 (2016). 52. Brar, V. W. et al. Gate-controlled ionization and screening of cobalt adatoms on a graphene surface. Nat. Phys. 7, 43–47 (2011). Download 5.82 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling