High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ


Download 5.82 Mb.
Pdf ko'rish
bet15/27
Sana05.11.2023
Hajmi5.82 Mb.
#1749152
1   ...   11   12   13   14   15   16   17   18   ...   27
Bog'liq
nature-s41586-019-1718-x

532, 343–347 (2016).
32. Ruan, W. et al. Visualization of the periodic modulation of Cooper pairing in a cuprate 
superconductor. Nat. Phys14, 1178 (2018).
33. Mesaros, A. et al. Commensurate 4a
0
-period charge density modulations throughout 
the Bi
2
Sr
2
CaCu
2
O
8+x
pseudogap regime. Proc. Natl Acad. Sci. USA 113, 12661–12666 
(2016).
34. Cai, P. et al. Visualizing the evolution from the Mott insulator to a charge-ordered 
insulator in lightly doped cuprates. Nat. Phys12, 1047–1051 (2016).
35. Kohsaka, Y. et al. Visualization of the emergence of the pseudogap state and the 
evolution to superconductivity in a lightly hole-doped Mott insulator. Nat. Phys8,
534–538 (2012).
36. Alldredge, J. W. et al. Evolution of the electronic excitation spectrum with strongly 
diminishing hole density in superconducting Bi
2
Sr
2
CaCu
2
O
8+δ
Nat. Phys4, 319–326 
(2008).
37. Gozar, A. et al. High-temperature interface superconductivity between metallic and 
insulating copper oxides. Nature 455, 782–785 (2008).
38. Bollinger, A. T. & Božović, I. Two-dimensional superconductivity in the cuprates revealed 
by atomic-layer-by-layer molecular beam epitaxy. Supercond. Sci. Technol29, 103001 
(2016).
39. Terashima, T. et al. Superconductivity of one-unit-cell thick YBa
2
Cu
3
O
7
thin film. Phys. Rev. 
Lett67, 1362–1365 (1991).
40. Frindt, R. F. Superconductivity in ultrathin NbSe
2
layers. Phys. Rev. Lett28, 299–301 
(1972).
41. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102
10451–10453 (2005).
42. Ajayan, P., Kim, P. & Banerjee, K. Two-dimensional van der Waals materials. Phys. Today 
69, 38–44 (2016).
43. Sandilands, L. J. et al. Origin of the insulating state in exfoliated high-T
c
two-dimensional 
atomic crystals. Phys. Rev. B 90, 081402(R) (2014).
44. Jiang, D. et al. High-T
c
superconductivity in ultrathin Bi
2
Sr
2
CaCu
2
O
8+x
down to half-unit-
cell thickness by protection with graphene. Nat. Commun5, 5708 (2014).
45. Zaanen, J., Sawatzky, G. A. & Allen, J. W. Band gaps and electronic structure of transition-
metal compounds. Phys. Rev. Lett55, 418–421 (1985).
46. Presland, M. R., Tallon, J. L., Buckley, R. G., Liu, R. S. & Flower, N. E. General trends in 
oxygen stoichiometry effects on T
c
in Bi and Tl superconductors. Physica C 176, 95–105 
(1991).
47. Huang, Y. et al. Reliable exfoliation of large-area high-quality flakes of graphene and
other two-dimensional materials. ACS Nano 9, 10612–10620 (2015).
48. Bollinger, A. T. et al. Superconductor–insulator transition in La
2−x
Sr
x
CuO
4
at the pair 
quantum resistance. Nature 472, 458–460 (2011).
49. Leng, X., Garcia-Barriocanal, J., Bose, S., Lee, Y. & Goldman, A. M. Electrostatic control of 
the evolution from a superconducting phase to an insulating phase in ultrathin 
YBa
2
Cu
3
O
7−x
films. Phys. Rev. Lett107, 027001 (2011).
50. Ando, Y., Komiya, S., Segawa, K., Ono, S. & Kurita, Y. Electronic phase diagram of high-T
c
cuprate superconductors from a mapping of the in-plane resistivity curvature. Phys. Rev. 
Lett93, 267001 (2004).
51. Ruan, W. et al. Relationship between the parent charge transfer gap and maximum 
transition temperature in cuprates. Sci. Bull. (Beijing) 61, 1826–1832 (2016).
52. Brar, V. W. et al. Gate-controlled ionization and screening of cobalt adatoms on a 
graphene surface. Nat. Phys7, 43–47 (2011).

Download 5.82 Mb.

Do'stlaringiz bilan baham:
1   ...   11   12   13   14   15   16   17   18   ...   27




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling