I-bob. Funsiya tushunchasi
Uzluksiz funksiyalar xossalari. To`plamda uzluksizlik
Download 216 Kb.
|
Nozimaxon.02.21
- Bu sahifa navigatsiya:
- 3. Bir tomonlama uzluksizlik. Bir o`zgaruvchili funksiyaning uzilish nuqtalari.
2.4.Uzluksiz funksiyalar xossalari. To`plamda uzluksizlik
Nuqtada uzluksiz funksiyalar quyidagi xossalar bilan xarakterlаnadi: 1. f (M) va g(M) funksiyalar M0 nuqtada uzluksiz bo`lsa, u holda M0 nuqtada quyidagi funksiyalar ham uzluksiz bo`ladi: a) f (M) + g(M); b) k f (M) (k – o`zgarmas); c) f (M) · g(M); d) (g(M0) ≠ 0). 2. Agar f (M) funksiya V to`plamda aniqlangan bo`lib, M0 є V nuqtada uzluksiz va f (M0) > 0 (f (M0) < 0) bo`lsa, u holda M0 nuqtaning shunday bir δ atrofi Sδ(M0) mavjudki, barcha M є Sδ(M0) ∩ V nuqtalar uchun f (M) > 0 (f (M) < 0) tengsizlik o`rinli bo`ladi. To`plamning har bir nuqtasida uzluksiz funksiyaga to`plamda uzluksiz funksiya deyiladi. To`plamda uzluksiz funksiyalar esa quyidagi xossalarga ega: 1. Agar f (M) funksiya ixcham (chegaralangan va yopiq) V to`plamda uzluksiz bo`lsa, u holda f (M) funksiya V to`plamda chegaralangandir. 2. Agar f (M) funksiya ixcham V to`plamda uzluksiz bo`lsa, u holda f (M) funksiya V to`plamda o`zining eng katta va eng kichik qiymatlariga erishadi. Bir o`zgaruvchili funksiya uchun yuqorida qayd qilingan xossalardan tashqari, qo`shimcha quyidagi xossa o`rinli: 3. Agar f (x) funksiya [a; b] kesmada uzluksiz va kesmaning chetki nuqtalarida turli ishorali qiymatlarga erishsa (f (a) · f (b) < 0), u holda (a; b) intervalga tegishli kamida bitta c nuqta topiladiki, f (c) = 0 tenglik bajariladi (1-rasm). 1-rasm.
Bir o`zgaruvchili y = f (x) funksiya argumentning x ≤ x0 (x ≥ x0) qiymatlarida aniqlangan bo`lsin. Agar ( ) munosabat bajarilsa, f (x) funksiya x0 nuqtada chapdan (o`ngdan) uzluksiz deyiladi. Masalan, funksiya 0 nuqtada chapdan uzluksiz, chunki, . y = f (x) funksiya [a; b] kesmaning har bir ichki nuqtasida uzluksiz bo`lib, a nuqtada o`ngdan va b nuqtada chapdan uzluksiz bo`lgandagina [a; b] kesmada uzluksiz bo`ladi. Bir o`zgaruvchili y = f (x) funksiya x0 nuqtaning biror atrofida aniqlangan bo`lsin. Funksiyaning x0 nuqtaning o`zida aniqlangan bo`li-shi shart emas. Agar f (x) funksiya x0 nuqtada uzluksiz bo`lmasa, funksiya x0 nuqtada uzilgan yoki x0 nuqta uning uzilish nuqtasi deyiladi. y = f (x) funksiyaning x0 nuqtada chapdan va o`ngdan limitlari mavjud bo`lib, o`zaro teng bo`lmasa, ya`ni u holda x 0 nuqta funksiyaning birinchi tur uzilish nuqtasi deyiladi. Masalan, funksiya x0 = 0 nuqtada birinchi tur uzilishga ega, chunki (2 – rasm). Agar x0 nuqtada funksiyaning chapdan va o`ngdan limitlari f (x0 – 0) va f (x0 + 0) lar o`zaro teng bo`lib, funksiyaning x0 nuqtada erisha-digan qiymati f (x0) dan farq qilsa, unda x0 nuqta uzliksizlikni tiklash mumkin bo`lgan uzilish nuqtasi deb ataladi (3 – rasm). y = f (x) funksiyaning x0 nuqtada chapdan yoki o`ngdan limitlarining biri mavjud bo`lmasa (xususan, cheksiz bo`lsa), u holda x0 nuqta funksiyaning ikkinchi tur uzilish nuqtasi deyiladi. 2-rasm. 3-rasm. Masalan, funksiya x0 = 0 da ikkinchi tur uzilishga ega, chunki f (+0) =∞. Bir necha o`zgaruvchili funksiyalar uzilish nuqtalaridan tashqari, uzilish chiziqlari, sirtlari va hokazolarga ega bo`lishlari mumkin. XULOSA Kurs ishi uzluksiz ta’lim tizimining barcha bosqichlarida matematika fanini o’qitishda muhim ahamyatga ega bol’gan funksiya va uning grafigini o’rganish,o`rgatish masalasiga bag’ishlangan. Kurs ishi kirish, asosiy qism, xulosa va foydalanilgan adabiyotlar iborat. Kirish qismida yurtimizda ta`lim sohasida olib borilayotgan islohotlar,ularning samarali natijasi va mavzu bo`yicha boshlang`ich ma`lumotlar berildi. Asosiy qismda funksiya ta`rifi, uning kelib chiqishi,funksiyaning berilish usullari, aniqlanish soxasi, turli elementar funksiyalar va ularning grafiklari, funksiyaning asosiy xossalari, davriy va teskari funksiyalar, ular orasidagi bog’lanish, chiziqliqli funksiya, kvadratik funksiya, logorifimik funksiya, trigonometrik funksiya, teskari trigonometrik funksiyalar,funksiya va uning grafini pedagogic texnalogiyalar orqali o`qitish haqidagi to’liq ma’lumotlar keltirildi.Har bir keltirilgan misollar grafiklari bilan boyitildi,zero,mavzu ham aynan grafikka bog`liq. Ko’rilgan masalalar yuzasidan xususiy metodik tafsiyalar olish mumkin: Funksiya grafigini o’qitilishi, talimda ko’rgazmalilik tamoilini amalgam oshirishda yordam beradi. O’quvchilar qiziqishini ortirishda muhum ro’l o’ynaydi. Matematika ta’limda maqsadni aniq belgilash va kafolatlangan natijaga intilish xususiyatini taminlaydi. Xulosa qiladigan bo`lsam,matematikaning har bir bo`limiga o`tganimizda unda yangidan yangi,qiziqarli ma`lumotlarga duch kelamiz,ularni o`quvchilarga yanada qiziqarli va tushunarli qilib yetkazib berish o`qituvchining mahoratiga bog`liq.Mavzuni hayotga bog`lab tushuntirib berish,undagi o`ziga xos xususiyatlarni o`quvchiga yetkazib berish murakkab jarayon.O`qituvchi hamisha ishiga puxta va har qanday savollarga tayyor bo`lishi lozim. Malakasini,tajribasini muntazam oshirib borishi kerak.O`qituvchining zamon bilan ham nafas bo`lishi ham bugungi kun talabi. Shunday ekan biz bo`lajak pedagoglar o`qituvchilik sharafliligi bilan bir qatorda ma`suliyatli kasb ekanligini unutmagan holda,vaqtimiz,imkonimiz borida o`qib o`rganib olishimiz kerak. Download 216 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling