Имитационное моделирование
СТАТИСТИЧЕСКОЕ ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ
Download 133.81 Kb.
|
Пен мпи
2.3 СТАТИСТИЧЕСКОЕ ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕВ вероятностном имитационном моделировании оперируют не с характеристиками случайных процессов, а с конкретными случайными числовыми значениями параметров ПС. При этом результаты, полученные при воспроизведении на имитационной модели рассматриваемого процесса, являются случайными реализациями. Поэтому для нахождения объективных и устойчивых характеристик процесса требуется его многократное воспроизведение, с последующей статистической обработкой полученных данных. Именно поэтому исследование сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационного моделирования принято называть статистическим моделированием. Статистическая модель случайного процесса — это алгоритм, с помощью которого имитируют работу сложной системы, подверженной случайным возмущениям; имитируют взаимодействие элементов системы, носящих вероятностный характер. При реализации на ЭВМ статистического имитационного моделирования возникает задача получения на ЭВМ случайных числовых последовательностей с заданными вероятностными характеристиками. Численный метод, решающий задачу генерирования последовательности случайных чисел с заданными законами распределения, получил название "метод статистических испытаний" или "метод Монте-Карло". Так как метод Монте-Карло кроме статистического моделирования имеет приложение к ряду численных методов (взятие интегралов, решение уравнений), то целесообразно иметь различные термины. Итак, статистическое моделирование — это способ изучения сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационных моделей. Метод Монте-Карло — это численный метод, моделирующий на ЭВМ псевдослучайные числовые последовательности с заданными вероятностными характеристиками. Методика статистического моделирования состоит из следующих этапов: 1. Моделирование на ЭВМ псевдослучайных последовательностей с заданной корреляцией и законом распределения вероятностей (метод Монте-Карло), имитирующих на ЭВМ случайные значения параметров при каждом испытании; 2. Преобразование полученных числовых последовательностей на имитационных математических моделях. 3. Статистическая обработка результатов моделирования. Download 133.81 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling