Имитационное моделирование


СТАТИСТИЧЕСКОЕ ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ


Download 133.81 Kb.
bet9/11
Sana13.12.2022
Hajmi133.81 Kb.
#999100
TuriКурсовая
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
Пен мпи

2.3 СТАТИСТИЧЕСКОЕ ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ


В вероятностном имитационном моделировании оперируют не с характеристиками случайных процессов, а с конкретными случайными числовыми значениями параметров ПС. При этом результаты, полученные при воспроизведении на имитационной модели рассматриваемого процесса, являются случайными реализациями. Поэтому для нахождения объективных и устойчивых характеристик процесса требуется его многократное воспроизведение, с последующей статистической обработкой полученных данных. Именно поэтому исследование сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационного моделирования принято называть статистическим моделированием.
Статистическая модель случайного процесса — это алгоритм, с помощью которого имитируют работу сложной системы, подверженной случайным возмущениям; имитируют взаимодействие элементов системы, носящих вероятностный характер.
При реализации на ЭВМ статистического имитационного моделирования возникает задача получения на ЭВМ случайных числовых последовательностей с заданными вероятностными характеристиками. Численный метод, решающий задачу генерирования последовательности случайных чисел с заданными законами распределения, получил название "метод статистических испытаний" или "метод Монте-Карло".
Так как метод Монте-Карло кроме статистического моделирования имеет приложение к ряду численных методов (взятие интегралов, решение уравнений), то целесообразно иметь различные термины.
Итак, статистическое моделирование — это способ изучения сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационных моделей.
Метод Монте-Карло — это численный метод, моделирующий на ЭВМ псевдослучайные числовые последовательности с заданными вероятностными характеристиками.
Методика статистического моделирования состоит из следующих этапов:
1. Моделирование на ЭВМ псевдослучайных последовательностей с заданной корреляцией и законом распределения вероятностей (метод Монте-Карло), имитирующих на ЭВМ случайные значения параметров при каждом испытании;
2. Преобразование полученных числовых последовательностей на имитационных математических моделях.
3. Статистическая обработка результатов моделирования.


Download 133.81 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling