Inkjet Printing Inkjet Technology Fundamentals Rafi Bronstein Rafi.Bronstein@HP.com Mobile: 054-531-3760
Inkjet Technology and Inkjet Printing Rafi Bronstein Rafi.Bronstein@HP.com 2008
Course Syllabus Inkjet technology history and fundamentals Most successful inkjet printing technologies - Continuous inkjet technologies
- Drop-on-Demand inkjet technologies
- Thermal inkjet
- Piezo inkjet
- Novel ink ejection technologies
Course Syllabus Print head fabrication materials and processes Print head designs and key vendors - Thermal inkjet
- Piezo inkjet
- Direct ink ejection
Piezo print head design parameters - Frequency, crosstalk, drop placement accuracy …
Course Syllabus Inkjet printing substrates - Paper and coatings
- Non-paper media
Basics of radiometry and basic color theory - Radiometry
- Color systems and color management
Course Syllabus Ink drying and curing technologies Drop-on-demand ink droplet deflection techniques
Course Syllabus The printing industry Digital printing and inkjet printing
Ink Jet Printing Methods Classification
Ink Jet Printing History (I) 1878 – Lord Rayleigh 1929 – Hansell, USP #1,941,001 Electrostatic Deflection Recorder 1938 – Genschmer, USP #2,151,683 Spark Type Ink Ejector 1946 – Hansell, USP #2,512,743 Jet Sprayer Actuated by Piezoelectric 1958 – Winston, USP #3,060,429 Drop Jetting by Electrostatic Attraction 1964 – Sweet, USP #3,596,275 Continuous Inkjet Printing 1966 – Hertz et al. USP #3,416,153 Modulation by Electrostatic Dispersion 1967 – Sweet et al. USP #3,373,437 Array of Continuous Ink Jets
Ink Jet Printing History (II) 1970 – Kyser et al. USP #3,946,398 Drop-on-Demand Bend Mode Inkjet Apparatus 1970 – Zoltan, USP #3,683,212 Squeeze Tube Piezoelectric Inkjet 1972 - Stemme – USP #3,747,120 Bend Mode with Metal Diaphragm 1979 – Endo et al. GBP #2,007,162 Electrothermal Transducer (Bubble jet) 1982 – Howkins, USP #4,459,601 Piezoelectric Push Mode 1982 – Vaught et al. USP #4,490,728 Electrothermal Transducer (Thermal Inkjet) 1979 - 1985 – Fishbeck, USP #4,032,929 - USP #4,584,590 Shear Mode Transducer
Ink Jet Printing Continuous Drop-On-Demand (DOD) - Piezoelectric
- Thermal (Bubble) inkjet
Others
Lord Rayleigh – Drop Formation Law (I)
Lord Rayleigh – Drop Formation Law (II)
Drop Formation – Ink Jet Basics Can the drop size be controlled? Can the spatial spacing of the drops be controlled? Can the break-up length be controlled? What would be the drop selection method?
Sweet-type Continuous Ink Jet
Binary Continuous Ink Jet
Is It So Simple?
Drop Charging Methods
Drop Charge Requirements and Limits
Drop Deflection
Density modulation (W. Lloyd & H. Taub)
Density modulation (H. Hertz)
Key Inkjet Patents (I)
Key Inkjet Patents (II)
Piezoelectric Materials
Piezoelectric Materials (I)
Piezo effect and Piezoelectric Deformation
Elements of Piezoelectric Inkjet technology
Key Inkjet Patents (III)
Drop-on-Demand Piezoelectric Inkjet
Drop Ejection Process
Forces Acting on Ink Drop
Elements of Thermal Inkjet (print head structure)
Elements of Thermal Inkjet (how it works)
Elements of Thermal Inkjet (drop ejection process)
Thermal Inkjet Configurations
Key Inkjet Patents (IV)
Key Inkjet Patents (V)
Key Inkjet Patents (VI)
Key Inkjet Patents (VI)
Key Inkjet Patents (VII)
Key Inkjet Patents (VIII)
Key Print Head Characteristics Resolution Drop volume Drop speed - Array pitch
- Drop speed uniformity across the array
- Operating temperature range
- Physical size and weight
Print Head Resolution – Print Resolution Pitch between two neighboring nozzles - Actual resolution
- Linear array
- Two dimensional array
Electronic resolution - Minimal printable distance between two successive dots
Drop Ejection Frequency Minimal time between two successive drop ejection cycles - System resonance
- Fixed frequency
- Plurality of ink ejection frequencies
Defines throughput
Drop Speed The speed at which the drop leaves the orifice - Aerodynamic resistance
- Multi drop grey scale printing
- Ejection force
- Ink parameters
Defines printing speed Drop speed variations
Effect of Drop Speed Variations
Drop Volume The volume of the ejected drop (picoliter; nanogram) Defines amount of ink on the substrate and accordingly image color gamut
Tektronix Print head US Pat. No. 5,155,498
Drive Signal Form US Pat. No. 5,155,498
Various Drop Formation Wait Periods. Signal of Fig. 2. US Pat. No. 5,155,498
Drop Flight Speed with Signal of Fig. 2. US Pat. No. 5,155,498
Another Form of Drive Signal US Pat. No. 5,155,498
Print Head Pressure Changes with Drive Signals of Figs. 6-7. US Pat. No. 5,155,498
Crosstalk Between the Channels
Drop Volume as Function of Ejection frequency US 5,274,400 (HP)
XAAR XJ500/360. VEEjet.
Q&A Do you have any questions?
Thank you
Do'stlaringiz bilan baham: |