Inkjet Technology and Inkjet Printing Rafi Bronstein


Download 548 b.
Sana17.12.2017
Hajmi548 b.
#22481


Inkjet Printing Inkjet Technology Fundamentals Rafi Bronstein Rafi.Bronstein@HP.com Mobile: 054-531-3760


Inkjet Technology and Inkjet Printing

  • Rafi Bronstein

  • Rafi.Bronstein@HP.com

  • 2008



Course Syllabus

  • Inkjet technology history and fundamentals

  • Most successful inkjet printing technologies

    • Continuous inkjet technologies
    • Drop-on-Demand inkjet technologies
      • Thermal inkjet
      • Piezo inkjet
      • Novel ink ejection technologies


Course Syllabus

  • Print head fabrication materials and processes

  • Print head designs and key vendors

    • Thermal inkjet
    • Piezo inkjet
    • Direct ink ejection
  • Piezo print head design parameters

    • Frequency, crosstalk, drop placement accuracy …


Course Syllabus

  • Printing inks and their composition

    • Ink types and properties
  • Inkjet printing substrates

    • Paper and coatings
    • Non-paper media
  • Basics of radiometry and basic color theory

    • Radiometry
    • Color systems and color management


Course Syllabus

  • Ink drying and curing technologies

    • Drying
    • Curing
  • Drop-on-demand ink droplet deflection techniques

    • Sony
    • Kodak
    • Others


Course Syllabus



Ink Jet Printing Methods Classification



Ink Jet Printing History (I)

  • 1878 – Lord Rayleigh

  • 1929 – Hansell, USP #1,941,001 Electrostatic Deflection Recorder

  • 1938 – Genschmer, USP #2,151,683 Spark Type Ink Ejector

  • 1946 – Hansell, USP #2,512,743 Jet Sprayer Actuated by Piezoelectric

  • 1958 – Winston, USP #3,060,429 Drop Jetting by Electrostatic Attraction

  • 1962 – Naiman, USP #3,179,042 Sudden Steam Printer

  • 1964 – Sweet, USP #3,596,275 Continuous Inkjet Printing

  • 1966 – Hertz et al. USP #3,416,153 Modulation by Electrostatic Dispersion

  • 1967 – Sweet et al. USP #3,373,437 Array of Continuous Ink Jets



Ink Jet Printing History (II)

  • 1970 – Kyser et al. USP #3,946,398 Drop-on-Demand Bend Mode Inkjet Apparatus

  • 1970 – Zoltan, USP #3,683,212 Squeeze Tube Piezoelectric Inkjet

  • 1972 - Stemme – USP #3,747,120 Bend Mode with Metal Diaphragm

  • 1979 – Endo et al. GBP #2,007,162 Electrothermal Transducer (Bubble jet)

  • 1982 – Howkins, USP #4,459,601 Piezoelectric Push Mode

  • 1982 – Vaught et al. USP #4,490,728 Electrothermal Transducer (Thermal Inkjet)

  • 1979 - 1985 – Fishbeck, USP #4,032,929 - USP #4,584,590 Shear Mode Transducer

  • 1989 – Bartky et al. USP #4,879,568 Droplet Deposition Apparatus



Ink Jet Printing

  • Continuous

  • Drop-On-Demand (DOD)

    • Piezoelectric
    • Thermal (Bubble) inkjet
  • Others



Lord Rayleigh – Drop Formation Law (I)



Lord Rayleigh – Drop Formation Law (II)



Drop Formation – Ink Jet Basics

  • Can the drop size be controlled?

  • Can the spatial spacing of the drops be controlled?

  • Can the break-up length be controlled?

  • What would be the drop selection method?



Sweet-type Continuous Ink Jet



Binary Continuous Ink Jet



Is It So Simple?



Drop Charging Methods



Drop Charge Requirements and Limits



Drop Deflection



Density modulation (W. Lloyd & H. Taub)



Density modulation (H. Hertz)



Key Inkjet Patents (I)



Key Inkjet Patents (II)



Piezoelectric Materials



Piezo effect and Piezoelectric Deformation



Piezoelectric Materials (I)



Piezo effect and Piezoelectric Deformation



Elements of Piezoelectric Inkjet technology



Key Inkjet Patents (III)



Drop-on-Demand Piezoelectric Inkjet



Drop Ejection Process



Forces Acting on Ink Drop



Elements of Thermal Inkjet (print head structure)



Elements of Thermal Inkjet (how it works)



Elements of Thermal Inkjet (drop ejection process)



Thermal Inkjet Configurations



Key Inkjet Patents (IV)



Key Inkjet Patents (V)



Key Inkjet Patents (VI)



Key Inkjet Patents (VI)



Key Inkjet Patents (VII)



Key Inkjet Patents (VIII)



Key Print Head Characteristics

  • Resolution

  • Drop ejection frequency

  • Drop volume

  • Drop speed

    • Array pitch
    • Drop speed uniformity across the array
    • Operating temperature range
    • Physical size and weight


Print Head Resolution – Print Resolution

  • Pitch between two neighboring nozzles

    • Actual resolution
    • Linear array
    • Two dimensional array
  • Electronic resolution

    • Minimal printable distance between two successive dots


Drop Ejection Frequency

  • Minimal time between two successive drop ejection cycles

    • System resonance
    • Fixed frequency
    • Plurality of ink ejection frequencies
  • Defines throughput



Drop Speed

  • The speed at which the drop leaves the orifice

    • Aerodynamic resistance
    • Multi drop grey scale printing
    • Ejection force
    • Ink parameters
  • Defines printing speed

  • Drop speed variations



Effect of Drop Speed Variations



Drop Volume

  • The volume of the ejected drop (picoliter; nanogram)

  • Defines amount of ink on the substrate and accordingly image color gamut



Tektronix Print head US Pat. No. 5,155,498



Drive Signal Form US Pat. No. 5,155,498



Various Drop Formation Wait Periods. Signal of Fig. 2. US Pat. No. 5,155,498



Drop Flight Speed with Signal of Fig. 2. US Pat. No. 5,155,498



Another Form of Drive Signal US Pat. No. 5,155,498



Print Head Pressure Changes with Drive Signals of Figs. 6-7. US Pat. No. 5,155,498



Crosstalk Between the Channels



Drop Volume as Function of Ejection frequency US 5,274,400 (HP)



XAAR XJ500/360. VEEjet.



Q&A

  • Do you have any questions?



Thank you



Download 548 b.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling