2. Распознавание букв алфавита.
Будем представлять буквы в виде точечных изображений (рис. ).
Рис. . Точечное изображение.
Темной клетке-пикселу на изображении соответствует Iij = 1 , светлому — Iij = 0 . Задача состоит в том, чтобы определить по изображению букву, которая была предъявлена.
Построим МСП с Ni х Nj входами, где каждому входу соответствует один пиксел: xk = Iij . Яркости пикселов будут компонентами входного вектора.
В качестве выходных сигналов выберем вероятности того, что предъявленное изображение соответствует данной букве:
Сеть рассчитывает выход:
где выход c1 = 0,9 означает, к примеру, что предъявлено изображение буквы "А", и сеть уверена в этом на 90 %, выход c2 = 0,1 — что изображение соответствовало букве "Б" с вероятностью 10 % и т.д.
Существует другой способ: входы сети выбираются так же, а выход – только один, номер m предъявленной буквы. Сеть учится давать значение m по предъявленному изображению I:
(Iij) → m
В этом случае недостатком является то, что буквы, имеющие близкие номера m, но непохожие изображения, могут быть перепутаны сетью при распознавании.
Выбор количества нейронов и слоев
Не существует строго определенной процедуры для выбора количества нейронов и количества слоев в сети. Чем больше количество нейронов и слоев, тем шире возможности сети, тем медленнее она обучается и работает и тем более нелинейной может быть зависимость вход-выход.
Количество нейронов и слоев связано:
1) со сложностью задачи;
2) с количеством данных для обучения;
3) с требуемым количеством входов и выходов сети;
4) с имеющимися ресурсами: памятью и быстродействием машины, на которой моделируется сеть;
Были попытки записать эмпирические формулы для числа слоев и нейронов, но применимость формул оказалась очень ограниченной.
Do'stlaringiz bilan baham: |