Issn 2181-1296 ilmiy axborotnoma научный вестник scientific journal
Download 202.73 Kb. Pdf ko'rish
|
SamDU (axborotnoma), 2021 yil, 1-son(II)
98
ILMIY AXBOROTNOM A M EXANIKA 2021-yil, 1-son - On the basis of the obtained equation, the problem of free torsional vibrations of a round conical elastic rod is numerically solved; - The greater the modulus of elasticity of the material at a fixed value of the number of waves, the greater the value of its frequency; - the frequency values decrease with distance from the section z = 0, which is considered to be the coordinate head of the rod. References 1. KM Liew, T.Y Ng, X.Zhao (2005) Free vibration analysis of conical shells via the element-free kp-Ritz method //Journal o f Sound and Vibration. 281(3-5). pp.627-645. https://doi.org/10.1016/jjsv.2004.01.005 2. K.Y.Lam, Li Hua (1997) Vibration analysis of a rotating truncated circular conical shell // International Journal o f Solids and Structures. 34(17). pp.2183-2197, doi.org/10.1016/S0020- 7683(96)00100-X. 3. Khudoynazarov Kh.Kh., Khalmuradov R.I., Yalgashev B.F. (2021) Ljngitudinal-radial vibrations of a elastic celindrical shel filled with a viscous compressible liquid //Tomsk state university. Journal o f Mathematics and Mechanics. 69. 139-154. doi 10.17223/19988621/69/11. 4. Qiyi Dai, Qingjie Cao, Yushu Chen (2018 ) Frequency analysis of rotating truncated conical shells using the Haar wavelet method // Applied Mathematical Modelling. 57. 603-613. https://doi.org/10.1016/j. apm.2017.06.025. 5. Р.И.Халмурадов. (2017) Уравнения колебания вязкоупругой пластинки //Научный вестник Самаркандского государственного университета. №3. 86-90. 6. Р.И.Халмурадов. (2017) Свободные колебания армированной вязкоупругой пластинки // Узбекский журнал Проблемы механики. №2-3. 53-57. 7. Филиппов И.Г., Кудайназаров К. Уточнение уравнений продольно-радиальных колебаний круговой цилиндрической вязкоупругой оболочки //Прикладная механика. 1990, т.26, №2. C.63-71. 8. K.Khudoynazarov, B.F.Yalgashev and T.Mavlonov (2021) Mathematical modelling of torsional vibrations of the three-layer cylindrical viscoelastic shell. IOP Conf. Series: Mater. Sci. Eng. 1030 012098 DOI: 10.1088/1757-899X/1030/1/012098 9. Худойназаров Х.Х., Буркутбоев Ш.М. (2017) Математическая модель крутильных колебаний цилиндрического слоя с учетом протекающей жидкости и вращения // Математическое моделирование и численные методы. № 4. C. 38-56. 10. R.I.Khalmuradov and B.F.Yalgashev (2020) Frequency analysis of longitudinal-radial vibrations of a cylindrical shell. IOP Conf. Series: Earth and Environmental Science 614 012087 doi: 10.1088/1755 1315/614/1/012087 11. Kh.Khudoynazarov and Sh.R.Yaxshiboyev (2020) The Mathematical Model of Transverse Vibrations of the Three-Layer Plate. IOP Conf. Series: Earth and Environmental Science 614 012062 doi: 10.1088/1755-1315/614/1/012062. 12. Kh.Khudoynazarov and Z.B.Khudoyberdiyev (2020) Unsteady vibrations of a three-layer plate with an asymmetric structure. IOP Conf. Series: Earth and Environmental Science 614. 012061 doi: 10.1088/1755-1315/614/1/012061. 13. R.I.Khalmuradov and E.A.Ismoilov (2020) Nonlinear vibrations of a circular plate reinforced by ribs. IOP Conf. Series: Earth and Environmental Science 614. 012071 doi: 10.1088/1755 1315/614/1/012071. 14. Р.И.Халмурадов, Х.Худойназаров, З.Худойбердиев. (2017) Свободные колебания упругой трёхслойной пластинки // Узбекский журнал Проблемы механики. №2-3. 46-52. 15. Omer Civalek (2006) An efficient method for free vibration analysis of rotating truncated conical shells// Download 202.73 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling