Issn 2181-1296 ilmiy axborotnoma научный вестник scientific journal


Download 202.73 Kb.
Pdf ko'rish
bet5/8
Sana27.02.2023
Hajmi202.73 Kb.
#1234841
1   2   3   4   5   6   7   8
Bog'liq
SamDU (axborotnoma), 2021 yil, 1-son(II)

95


ILMIY AXBOROTNOM A
M EXANIKA
2021-yil, 1-son
3. 
Derivation of the oscillation equation. Substituting the above expressions (2) into equation (3), 
we have got the wave equation with respect to Yj
1 8 2 Y , 
л
8 2 
1 8 
8 2 
/ n
A Y , ----- =------ ^ = 0; 
A = — - + ------ + — -
(5)
b
8 t
8r 
r 8r 
8z
Let us introduce the function - f re{z,t) of external influences on the boundary condition (4), given above,
in the following form: [3]
f (z,t)= j 81П qZ j ^ j f r^° (z,tУР,Ф 
(6) 
0 - cosqzJ 
v
)
Accordingly, Y , potential we will describe as following
Yj (r, z, t )= j 
\dq j Y /0)( r , к p ) e ptdp 
(7)
О- c o s qzJ 
h)
and we put it in equation (5) and we have got a simple second-order Bessel differential equation.
^
+ 1

- p
2 | y (0) = 0
dr 
r dr
here p 2 = q 2 + 
.
P
The general solution to this equation is bounded by r = 0
Y i(0)( r ) = С , ( p r  ) 
(8)
Here I 0 - modified Bessel function; С (к) - arbitrary variable of integration.
So U e - torsional displacement and <Ггв 
(r, z, 
t
)
, O e  
(r, z, 
t

we also describe stress as (6).
U g (r, z, t )=  j " q 
jd q j
U (o'>
 (r, 
к p ) e ptd p  ,
0 - c o s qzJ 
(l)
o e (r, z, t ) = [ s ' q 
| d q [ o ^ )  (r, к, p ) e ptdp , o re(r, z, t ) = [
q 
jd q [ o f e (r, к, p ) e ptdp  
(9)
0 -  c o sqzJ 
(,) 
о - cos qzJ 
(,)
Applying these images (9) and (6) to expressions (1) and (2), we use the general solution (8) for 
Y j0)( r ) substituted potentials, for variable displacements and stress we have the following expressions
U {i\ r ) = - p C i I , ( p r ) o (0)r e = - p 2C i1
2
 ( fir )  
O (0)z e = - q j u P C i I , ( p r ) (10) 
Now we will expand the I, ( p r ) -Bessel function in expression (10) to a series of degrees in the r-
radial coordinate levels, and when r = 0 and  = 0 , we denote the value U в°) as In this case it will be 
as following
C = - - r U (e l ( q , p ) , 
(11)
Using expressions (1) for U (o ), о^д1 va ofg , we express them in terms of U ^

(г /о )2^
U e = 
2Z
p
- n
^
f l ,  
(12)
Ore = 2 M ± p 2- ' 2 - ^ - - ^ U e 0 0 , Oze = 
p '-U ^ i, . 
( 13)
n=0 
n!(n + 2)! 
n=0 n!(n +, )!
Substituting these formulas (13) into the boundary condition (4), we arrive at the following algebraic 
equation.
r
2)2n+ \ 7(Q) 
( r i2 f n+‘ 

" - 2
-
'V 
-v 
/• 
-V 
/• 
j
'
в ,0
2 y p2n+2 
у л

U f i - g ^ 2 
p 2nU {e i = i ± £ _ f e e ]( z ,t ) 
(
14
)
^
n!(n + 2)! ^ 0 
n!(n + ,)! 
e,0J 
p
J r e K ' h  
v '
Now we introduce U e 0 function and X (C, ) operators as follows
96


ILMIY AXBOROTNOM A
M EXANIKA
2021-yil, 1-son
U e о = f 81П^
\d q \U f0 e ptd p , An( c ) = \ &Ш^
\dq \ p 2n^ ° W p .
(15)

0 -  cosqzj 
(l) 

0 - c o s qz J 
(i)
Interacting with the operator on both sides of the last equation (14), taking into account expressions (6) and 
(15)
sin qz


\dq f e ptdp
0 -  cos qzJ 
(i)
we have got following differential equation.
2
!
A"
(rl  2)2
:U e,o - c
(rl
2)2
-AnU,(0)
n!(n + 2)! 0,0 
n!(n +1)! 
0,0
1 + c 2
U
f 0 (z,t)
(16)
If, Taking into account that f t 2 = q 2 + p u 2 is equal , the operators An introduced by formula (15) 
have the following form with (z, ) variables
An =
p Q
U Qt2
a 2
Qz 2
n = 1, 2, 3,
(17)
Taking into account (17) in the obtained equation (16), the cone-shaped rod consists of the general 
differential equation of torsional vibrations. Since the order of this equation is infinitely large, it cannot be 
used to solve practical problems. Therefore, we are limited to n = 0 in equation (16). In this case
2 ( p Q2
4
ju Qt2
_ Q iл
Qzj
U (0) - r c — U (0) = 1 + ^ f (z t)
U e,0 
U e,0 
f re\z , 4 .
Qz 
u
(18)
We also get n = 0 connection in the formulas for displacement (12) and stresses (13), which 
determine the stress-strain state of the rod.
- - ^ (0) 
(19)
U e = rUg,0
Q2 TT 
Q2 TT
~ 2 U 0,0 
U ~ 2 U 0,0 
Qt 
Qz
Q TT

r u —
U 0 ,0
Qz
(20)
Suppose that no external force acts on the surface of the rod. Then we get f re (z, ) = 0 in equation 
(18) and multiply both sides of the equation by — . As a result, we have got the following uniform second-
order differential equation
1 Q 2  
_ _ ё !
u
 
- 4 c Q U
= 0
U n 
~ 2 U e,0 
- U e,0 
0 ,
Qz 
r Qz
2 Qt
0,0
(21)
here — = -1 , ( b = U  - shear wave velocity on the selected rod). Into this equation we introduce 


\ p
dimensionless variables with the following formulas
l
r = ~0 l; t = t - l - ; z = z l ; U 0o0 =  
b
(22)
l
here — ,is a length l - shear wave transmission from one end of the rod to the other t -  represents the time,
- longitudinal wave velocity in steel.
In that case, omit the sign “Tilda” above the variables and make Equation (21) as follows
Ч 2 Q2
Q
2
4c 
Q
2 Qt
Qz
(r0 +cz) Qz
\
U = 0
(23)
The resulting equation (23) is the equation of torsional vibrations of a cone-shaped elastic rod in 
dimensionless coordinates.
4. H arm onic vibrations of a rod.
Based on the obtained vibrational equation (23), we solve the problem of harmonic vibrations of the 
rod. Let's look for a solution in the following form.
n=0
n
2
r
<г..л =
4
r

Download 202.73 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling