Kamolov nodirjon ma’murjon o‘G‘li tashkent State Technical University, doctoral student


Download 1.1 Mb.
bet5/5
Sana05.09.2023
Hajmi1.1 Mb.
#1673100
1   2   3   4   5
Bog'liq
NAMUNA

References

  1. Bourlard, H., & Dupont, S. (1997). Sub-band-based speech recognition. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Munich.

  2. Bourlard, H., & Morgan, N. (1994). Connectionist Speech Recognition – A Hybrid Approach. Norwell, MA, USA: Kluwer Academic Publishers. doi:10.1007/978-1-4615-3210-1

  3. Brown, P. A. (1987). The Acoustic Modeling Problem in Automatic Speech Recognition [Doctoral dissertation]. School of Computer Science at Carnegie Mellon University.

  4. Dahl G. E., Yu D, Deng Li & Acero A. (2012). Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition. IEEE Transactions on Audio, Speech, and Language Processing. 20(1), 30-42.

  5. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B. Methodological, 39(1), 1–38.

  6. Deng, L., & Shaughnessy, D. (2003). Speech Processing, A Dynamic and Optimization-Oriented Approach. New York, NY, USA: Marcel Dekker Inc.

  7. Esposito, A., & Marinaro, M. (2002). Some Notes on Nonlinearities of Speech. Nonlinear Speech Modeling and Applications. Advanced Lectures and Revised Selected Papers. Germany: Springer.

  8. Evermann, G., Chan, H. Y., Gales, M. J. F., Hain, T., Liu, X., & Mrva, D. et al. (2004). Development of the 2003 CU-HTK conversational telephone speech transcription system. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Montreal, Canada. doi:10.1109/ ICASSP.2004.1325969

  9. Faundez-Zanuy, M. (2002). Nonlinear Speech Processing: Overview and Possibilities in Speech Coding. Nonlinear Speech Modeling and Applications. Advanced Lectures and Revised Selected Papers.

  10. Germany: Springer. Frikha, M., & Hamida, A. B. (2012). A Comparitive Survey of ANN and Hybrid HMM/ANN Architectures for Robust Speech Recognition. American Journal of Intelligent Systems, 2(1), 1–8.doi:10.5923/j. ajis.20120201.01

  11. Gehring, J., Lee, W., Kilgour, K., Lane, I., Miao, Y., & Waibel, A. (2013). Modular Combination of Deep Neural Networks for Acoustic Modeling. Proceedings of Interspeech. Lyon , France


WWW.HUMOSCIENCE.COM



Download 1.1 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling