Ko’p o’lchovli regressiya tenglamasi
Download 20.1 Kb.
|
Ne\'matillo Maxmudov Ehtimollar
- Bu sahifa navigatsiya:
- 2-mustaqil ishi
Muhammad al Xorazmiy nomidagi Toshkent Axborot Texnologiyalari Universiteti Telekommunikatsiya texnologiyalari fakulteti 414-21 guruh talabasi Maxmudov Ne’matillo Ehtimollar va Statistika fanidan tayyorlagan 2-mustaqil ishi Toshkent-2023 Ko’p o’lchovli regressiya tenglamasi. Ikki o‘zgaruvchili regressiya tenglamasining tabiiy umumlashmasi bo‘lib, ko‘p o‘lchovli regressiya modeli hisoblanadi: , i=1;n.. Bu yerda – i-kuzatish uchun natijaviy belgi qiymatlari (bog‘liq o‘zgaruvchi); - j-faktorning (j=1;m) (erkli o‘zgaruvchi yoki tushuntiruvchi o‘zgaruvchi) i-kuzatishdagi qiymati i=1;n; –i-kuzatish uchun natijaviy belgining tasodifiy tashkill etuvchisi; – ozod had bo‘lib, formal jihatdan y ni bo‘lgandagi o‘rta qiymatini bildiradi; - j-faktor (j=1;m) oldidagi regressiyaning “toza” koeffitsiyenti. Ushbu koeffitsiyent boshqa faktorlar o‘zlarining o‘rta qiymatlarida fiksirlanganlik sharti ostida j-faktor o‘zining o‘lchov birligida bir birlikka o‘zgarganda natijaviy belgi y – ni o‘zining o‘lchov birligida o‘rta hisobda qancha birlikka o‘zgarishini anglatadi. Ko‘p o‘lchovli regressiya modelidagi parametrlarini baholash uchun koʻpincha EKKU (eng kichik kvadratlar usuli) dan foydalaniladi. Ushbu usulga koʻra parametrlarning baholari sifatida funksionalni minimallashtiradigan miqdorlar olinad. Ushbu funksiya parametrlarga bogʻliq boʻlgan funksiya boʻlganligii uchun dan ushbu parametrlar boʻyicha xususiy hosila olib nolga tenglashtiramiz. Ushbu teglamalar sistemasi parametrlarga nisbatan m+1 ta nomaʼlumli m+1 ta tenglamadan iborat bo‘lib, ushbu tenglamalar sistemasini yechish orqali ko‘p o‘lchovli regressiya tenglamasi nomaʼlum parametrlari baholari (taqribiy qiymatlari) topiladi. XULOSA
Ikki o‘zgaruvchili regressiya tenglamasining tabiiy umumlashmasi bo‘lib, ko‘p o‘lchovli regressiya modeli hisoblanadi: , i=1;n.. Bu yerda – i-kuzatish uchun natijaviy belgi qiymatlari (bog‘liq o‘zgaruvchi); - j-faktorning (j=1;m) (erkli o‘zgaruvchi yoki tushuntiruvchi o‘zgaruvchi) i-kuzatishdagi qiymati i=1;n; –i-kuzatish uchun natijaviy belgining tasodifiy tashkill etuvchisi; – ozod had bo‘lib, formal jihatdan y ni bo‘lgandagi o‘rta qiymatini bildiradi; - j-faktor (j=1;m) oldidagi regressiyaning “toza” koeffitsiyenti. Ushbu koeffitsiyent boshqa faktorlar o‘zlarining o‘rta qiymatlarida fiksirlanganlik sharti ostida j-faktor o‘zining o‘lchov birligida bir birlikka o‘zgarganda natijaviy belgi y – ni o‘zining o‘lchov birligida o‘rta hisobda qancha birlikka o‘zgarishini anglatadi. Regressiya tenglamasi to‘laligicha ahamiyatli ekanligini tekshirish uchun esa Fisher F-alomatidan foydalandik va buning uchun hisoblangan Fisher koeffitsiyenti bilan, jadval orqali topilgan Fisher koeffitsiyentini taqqosladik. Natijada, Bo‘lgani uchun regressiya tenglamasi statistic ahamiyatli bo’ldi .Analiz tahlil qilganimizda shu narsa aniqlandiki, YAIM(Aholi jon boshiga to‘g‘ri kelgan yalpi ichki mahsulot ) yildan – yilga o’sib bordi va bu umumiy O’zbekistonning natijasida ham kuzatildi. Men bu mustaqil ish davomida ko’p o’lchovli regressiya tenglamasini o’rgandim. Download 20.1 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling