Ko'p o'zgaruvchi funksiyaning yuqori tartibli hosilasi. Teylor formulasi funsiyaning ekistremuni


Download 0.6 Mb.
bet1/7
Sana25.03.2023
Hajmi0.6 Mb.
#1295618
  1   2   3   4   5   6   7
Bog'liq
Ko`p o`zgaruvchili funksiyaning differensial hisobi. Aniq integral


KO'P O'ZGARUVCHI FUNKSIYANING YUQORI TARTIBLI HOSILASI. TEYLOR FORMULASI FUNSIYANING EKISTREMUNI

Reja:


  1. Ko`p o`zgaruvchili funksiyaning gradienti

  2. Aniq integral


1. Ko`p o`zgaruvchili funksiyaning gradienti


funksiyaning M0 nuqtadagi gradienti deb, koordinata-lari M0 nuqtadagi funksiyaning mos xususiy hosilalar qiymatlariga teng bo`lgan n o`lchovli vektorga aytiladi va ko`rinishda yoziladi:

1-misol. funksiyaning M0(1;-1) nuqtadagi gradientini toping.
Yechish. , ,


,
Demak, grad =(-18, -1) ga teng bo`ladi.
Gradientning asosiy hossasi:
funksiya nuqtada differensiallanuvchi bo`lib, - n o`lchovli birorta nolmas vektor bo`lsin. nuqtani qaraymiz. U holda, agar:
1) ushbu skalyar ko`paytma bo`lsa, u holda shunday T1 > 0 son mavjud bo`ladiki, barcha t, 0 < t < T1 lar uchun < tengsizlik bajariladi;
2) skalyar ko`paytma bo`lsa, u holda shunday T2 > 0 soni mavjud bo`ladiki, barcha t, 0 < t < T2 lar uchun > tengsizlik bajariladi.
Berilgan funksiyaning nuqtada erishadigan qiymatidan katta bo`ladigan nuqtani topish uchun quyidagicha ish tutamiz:
1) ko`chish yo`nalishini tanlaymiz, ya`ni shunday vektor topamizki, natijada bo`lsin;
2) nuqtani qaraymiz va t > 0 parametrni shunday tanlaymizki, > bo`lsin.
2-misol. funksiyaning M0(-1;1) nuqtadagi qiymatidan katta bo`ladigan nuqtani toping.
Yechish. Funktsiyaning gradientini topamiz:
. M0 nuqtadagi qiymati
bo`ladi. Agar = (1,-1) bo`lsa, u holda bo`ladi. Mt(-1 + t; 1- t) nuqtani qaraymiz. U holda = - 8t2+32t-22 ga teng bo`ladi va t = 2 da ga teng. Demak, t = 2 da funksiya eng katta qiymatga erishadi. Agar t = 2 bo`lsa, Mt(1,-1) bo`ladi va bu nuqtada = 10 ga teng. M0 nuqtada esa = - 22 ga teng edi.
Bir necha o`zgaruvchi funksiyaning ekstremumini topish gradientlar usulida gradientning asosiy xossasidan foydalaniladi.

Download 0.6 Mb.

Do'stlaringiz bilan baham:
  1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling