Ko`rsatkichli va logarifmik tenglamalarga oid misollar yеchish
Download 0.59 Mb. Pdf ko'rish
|
Ko`rsatkichli va logarifmik tenglamalarga oid misollar yеchish
- Bu sahifa navigatsiya:
- 1-teorema. Agar a>0 va a 1 bo’lib a m =a n bo’lsa, u holda m=n
- Variant № 1
Ko`rsatkichli va logarifmik tenglamalarga oid misollar yеchish Eng sodda ko’rsatkichli tenglama deb b a x ko’rinishdagi tenglamalarga aytiladi. Bunda a>0 va a≠1, b - ixtiyoriy haqiqiy son. Bu tenglamani yechishda ikki holat yuz berishi mumkin: 1) agar b
0 bo’lsa, tenglama yechimga ega emas. Chunki tenglamaning chap qismi ko’rsatkichli funktsiya bo’lganligi uchun x ning barcha qiymatlarida faqat musbat qiymatlar qabul qiladi. O’ng qismi esa manfiy son. Musbat son manfiy songa teng bo’lishi mumkin emas. Yuqoridagi matematik mulohazani grafik orqali ham ko’rishimiz mumkin (1-rasm):
1-rasm. 2) tenglama yechimga ega Agar b>0 bo’lsa,. Haqiqatdan ham buni grafik orqali ko’rish mumkin (2- va 3-rasmlar).
2-rasm.
3-rasm. x 1 va x 2 lar mos ravishda b a x tenglamaning a>1 va 0
asosan quyidagi ikki teoramadan foydalaniladi. 1-teorema. Agar a>0 va a
m =a n bo’lsa, u holda m=n bo’ladi, ya`ni ikkita teng darajalarning asoslari musbat va birdan farqli bo’lib ular teng bo’lsa, u holda bu darajalarning ko’rsatkichlari ham teng bo’ladi.
Isboti. m=n+c bo’lsin. U holda a n+c =a n yoki a n a c =a n . Bundan a n
bo’lganligi uchun tenglikning ikkala qismini a n ga qisqartirsak, a c =1
bo’ladi. a n 1 bo’lganligi uchun oxirgi tenglik faqat c=0 bo’lgandagina bajariladi. Demak, m=n ekan. 2-teorema. Agar a>0, a
a=b bo’ladi. Isboti. b m
m ga
bo’lsak, 1 m m b a yoki
1
b a bo’ladi. m 0 bo’lganligi uchun oxirgi tenglik faqat a=b bo’lganda bajariladi.
Ko’rsatkichli tenglamalarni yechishda asosan quyidagi formulalardan foydalanamiz:
1. . n m n m a a a
2. . : n m n m a a a
3. . ) ( m m m b a b a
4.
. m m m b a b a
5.
. ) ( n m n m a a
6. ). , , 0 (
n N m a a a n m n m
7.
). 0 ( 1 0 a a
8. . 1 n n a a
9. ). , , 0 ( 1 / N n N m a a a n m n m
Ko’rsatkichli tenglamalarni asosiy turlari quyidagilardan iborat.
I. B ir x il as os g a k eltirib yech iladig an ten gla malar. Bunday tenglamalarni yechishda asosan (1) teoremadan foydalaniladi. Misollar: 1. 2 x
x =2 2 ; x=2. Javob: x=2. 2.
. 4 1 8
yechish: 2 3 2 1 ) 2 ( x yoki
2 3 2 2 x , bundan 3x=-2, 3 2
x . Javob: 3 2
x . 3. 1 4 x . yechish. . 0
4 4 0 2 x x Javob:
. 0 x
II. Umumiy ko’paytuvchini qavsdan tashqariga chiqarish usuli bilan yechiladigan tenglamalar. Misollar: 1. .
4 4 1 x x
yechish. 320 4 4 4 x x
yoki ; 320
) 1 4 ( 4 x
. 3 ; 4 4 ; 64 4 3
x x Javob:
. 3 x
2. . 140
5 3 5 2
x
yechish. , 140
5 5 3 5 2 x x
. 3 ; 5 5 ; 140 25 28 5 ; 140
25 3 1 5 3
x x x Javob: x=3. III. Yangi noma`lum kiritish usuli bilan yechiladigan tenglamalar. Misollar. 1. .
5 7 6 49
x yechish. . 0
7 6 7 2
x Agar
t x 7 desak,
0 5 6 2
t bo’ladi. Bu kvadrat tenglamani Yechsak, 5
1 2 1
t bo’ladi. Demak, 1 7
x , bundan 0
; 5 7 x , bundan . 5
7
Javob: 0 x va
. 5 log 7
2.
. 3 5 2 5 2 3 2 x x yechish. . 0
5 5 2 5 5 2 3 2 x x
x 5 desak,
0 3 25 1 2 125 1 2
t yoki
. 0 375 10 2 t t Bu tenglamani yechsak, 15 ; 25 2 1 t t bo’ladi. Demak, 25 5
x dan
15 5 ; 2 x x . Bu tenglama Yechimga ega emas. Demak, tenglamaning Yechimi x=2 dan iborat.
IV. ko’rinishidagi tenglamalar. Bunda a>0, a 1, b>0, b 1 bo’lishi kerak. b x 0 bo’lgani uchun 1
x b a yoki
. 0 b a b a x Demak,
. 0 x Misol. 7 x =5
. Javob: . 0 x
Misol. V. Guruhlash usuli bilan yechiladigan tenglamalar. Misol.
. 0 35 7 35 5 7 5 2 2 x x x x
yechish. ) 35 1 ( 7 ) 35 1 ( 5 2
x yoki x x 7 5 2 yoki x x 7 25 . Bundan x=0. Javob: x=0.
VI. Grafik usulda yechiladigan tenglamalar. x x x x 3 2 , 1 2 ko’rinishdagi tenglamalarni grafik usulda taqribiy yechish mumkin. Buning uchun
2 va 1 x y
funktsiyalarning grafiklari yasaladi. Agar grafiklar kesishsa, kesishish nuqtasining abstsissasi tenglamaning yechimi bo’ladi. Agar kesishmasa, yechimi yo’q. Agar urinib o’tsa, bitta yechimi bo’ladi (4-rasm). x x b a
4-rasm.
Test savollari. Variant № 1 1.
1 4 1
tenglamani yeching. A) 1 B) 0 C) -1 D) 2 2. 81
3 x tenglamani yeching. A) 2
B) 3 C) 2 3
3. 108
3 3 2 1 2
x tenglamani yeching. A) 0 B) 6 C) -2 D) 2 4.
x x 8 5 tenglamani yeching. A) -1 B) 1 C) 0 D) Ø 5.
0 3 3 4 9 x x tenglamani yeching. A) {0;-1} B) {0;1} C) {1;2} D) {-1;-2}
1.
1 ) 3 , 0 ( 2 3 x tenglamani yeching. A) 3
B) 0 C) 3 2
2. 64 4 2 x tenglamani yeching. A) 2
B) 2 5 C) 5 2
5 2 3.
30 2 2 2 3 2 3
x tenglamani yeching. A) -1 B) 1 C) 15 D) -15 4.
x x 3 1 2 1 tenglamani yeching. A)
2 1 B) 2 1 C) 3 1 D) 0 5. 0 16 4 17 16 x x tenglamani yeching. A) {0;-2} B) {-2;2} C) {0;2} D) {-1;-2}
1.
3 4 2 2 2 x tenglamani yeching. A) 3
B) 2 1 C) 3 2 D)
3
2. 1 3 3 2 2 1 x x tenglamani yeching. A) 3
B) 4 3
3 4 D) 4 3 3.
28 2 2 2 1 1
x x tenglamani yeching. A) -2 B) 2 C) 3 D) -3 4.
x x 2 5 3 tenglamani yeching. A) 1 B) -1 C) Ø D) 0 5.
0 5 5 6 25 x x tenglamani yeching. A) {-1;0} B) {0;1} C) {-5;0} D) {0;5}
Mustaqil yechish uchun misollar.
1. 5 4 7 6 3 19 5 43 3 5 x x x x . 2. 3 1 3 3 ) 10 ( 01 , 0 5 2 2 2
x x . 3. 3 1 2
125 27 9 25 6 , 0 2
x . 4. 2 1 1 2 2 2 2 2 3 3 2
x x x . 5. 2 , 0 5 2 5 3 1 1 2 x x . 6. 0 3 3 36 9 3 1 2 2 x x . 7. 0 24 2 10 4 1
x . 8. 0 12 2 8 3 3 2
x x . 9. 99 10 10 2 2 1 1
x . 10. 0 4 7 ) 2 ( 7 6 2 2 x x x .
Download 0.59 Mb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling