Краткий обзор современных российских исследований в 2015-2020 гг


Download 205.78 Kb.
bet10/10
Sana21.02.2023
Hajmi205.78 Kb.
#1217260
TuriКраткий обзор
1   2   3   4   5   6   7   8   9   10
Bog'liq
5d239cf365da2e3cb1ea7dd6485e3eec

Dokl. Earth Sci. 2017; 472(1): 44–48.

  1. Duchkov AD, Duchkov AA, Dugarov GA, Drobchik AN. Velocities of ultrasonic waves in sand samples containing water, ice, or methane and tetrahydrofuran hydrates (laboratory measurements). Dokl. Earth Sci. 2018; 478(1): 74–78.

  2. Dugarov GA, Duchkov AA, Duchkov AD, Drobchik AN. Laboratory validation of effective acoustic velocity models for samples bearing hydrates of different type. J. Nat. Gas Sci. Eng. 2019; 63: 38–46.

  3. Duchkov AD, Dugarov GA, Duchkov AA, Drobchik AN. Laboratory investigations into the velocities and attenuation of ultrasonic waves in sand samples containing water/ice and methane and tetrahydrofuran hydrates. Russian Geology and Geophysics. 2019; 60(2): 193–203.

  4. Shumskayte MY, Manakov AYu, Glinskikh VN, Duchkov AD. Determination of dissociation stage of gas hydrates based on the analysis of NMR relaxometry method data. Russian Journal of geophysical technologies [Geofizicheskie tekhnologii]. 2019; (3): 4–12. (In Russian)

  5. Shagapov VSh, Chiglintseva AS, Shepelkevich OA. Numerical simulation of hydrate formation on injection cold gas in a snow massif. Mathematical models and computer simulations [Matematicheskoe modelirovanie]. 2019; 11(5): 690–703.

  6. Shagapov VS, Chiglintseva AS, Rusinov AA, Khasanov MK. On the theory of injection of a cold gas into a snow mass accompanied by hydrate formation. J. Eng. Phys. Thermophys. [Inzhenerno-Fizicheskii Zhurnal], 2018; 91(6): 1527–1538.

  7. Gimaltdinov IK, Khasanov MK. Mathematical model of the formation of a gas hydrate on the injection of gas into a stratum partially saturated with ice. J. Appl. Math. Mech. [Prikladnaya matematika i mekhanika]. 2016; 80(1): 57–64.

  8. Khasanov MK. Investigation of regimes of gas hydrate formation in a porous medium, partially saturated with ice. Thermophys. Aeromech. [Teplofizika i aeromekhanika]. 2015; 22(2): 245–255.

  9. Khasanov MK, Musakaev NG, Gimaltdinov IK. Features of the decomposition of gas hydrates with the formation of ice in a porous medium. J. Eng. Phys. Thermophys. 2015; 88(5): 1052–1061.

  10. Khasanov MK, Shagapov VSh. Methane gas hydrate decomposition in a porous medium upon injection of a warm carbon dioxide gas. J. Eng. Phys. Thermophys. 2016; 89(5): 1123–1133.

  11. Tsypkin GG. A mathematical model of carbon dioxide flooding with hydrate formation. Dokl. Phys. [Doklady akademii nauk]. 2014; 59(10): 463–466.

  12. Musakaev NG, Borodin SL. Gas production from the hydrate reservoir at negative temperatures. Oil and Gas Studies [Izvestija vysshikh uchebnyh zavedenij.Neft' i gaz]. 2017; (5): 80–85. (In Russian)

  13. Vlasov VA. Diffusion model of gas hydrate dissociation into ice and gas: simulation of the self-preservation effect. Int. J. Heat Mass Trans. 2016; 102: 631–636.

  14. Vlasov VA. Diffusion-kinetic model of gas hydrate film growth along the gas–water interface. Heat Mass Transfer. 2019; 55(12): 3537–3545.

  15. Vlasov VA, Nesterov AN, Reshetnikov AM. Kinetics of gas hydrate film growth along the water–gas interface. Russ. J. Phys. Chem. A. 2020; 94(9): 1949–1951.

  16. Shagapov VS, Chiglintseva AS, Rafikova GR. On the applicability of a quasi-stationary solution of the diffusion equation for the hydrate layer formed at the gas–ice (water) interface. Theor. Found. Chem. Eng. [Teoreticheskie osnovy himicheskoj tekhnologii]. 2018; 52(4): 560–567.

  17. Dolgaev SI, Kvon VG, Istomin VA, Gerasimov YuA, Troynikova AA. Comparative economic study of hydrate transportation technology. News of Gas Science. 2018; 33(1): 100–116. (In Russian)


Download 205.78 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling