Курс лекций по предмету «Технология обогащения нерудных полезных ископаемых» для магистров по специальности 5А540205 «Обогащение полезных ископаемых»
Download 2.23 Mb.
|
топи неруд
- Bu sahifa navigatsiya:
- Лекция 28 Технология обогащения флюоритовых руд План
- Цель занятий
Вопросы:
Применение и основные свойства барита? На какие технологические типы подразделяются баритовые руды? Существующие методы обогащения баритовых руд? Какие методы обогащения применяются при обогащении крупнозернистых кварцево-баритовых руд? Лекция 28 Технология обогащения флюоритовых руд План: 1) Характеристика флюорита и его месторождений. 2) Методы обогащения флюоритовых руд. 3) Технология обогащения флюоритовых руд. Цель занятий: Дать общие понятия о обогащении флюоритовых руд. 1. Флюорит (CaF2) как минерал и источник фтора находит широкое промышленное применение. Флюоритовые концентраты используются в химической промышленности (для производства плавиковой кислоты и фтористых солей), в производстве эмалей и специальных сортов стекла, а также в качестве металлургического флюса. Специфической областью применения минерала является оптика, в которой крупные бесцветные кристаллы оптического флюорита используются ;щя изготовления линз, призм и других деталей, обладающих практически одинаковым показателем преломления в разных длинах волн. Промышленные месторождения флюорита известны в карбонатитах, пегматитах, а также в гидротермальных, скар-новых и других образованиях. Однако практическое значение имеют только пегматитовые (около 25 % запасов) и гидротермальные (более 70 % запасов) месторождения. Основные запасы флюорита в России представлены си-ликатно-флюоритовыми и сульфидными рудами с содержанием 20—45 % CaF2. Флюорит извлекается также из карбо-натно-флюоритовых и барит-флюоритовых руд. Как правило, разрабатывают месторождения, руды которых содержат не менее 30 % флюорита. Однако в настоящее время в переработку вовлекаются и более бедные руды (содержащие более 14% флюорита). 2. Обогащение флюоритовых руд осуществляется методами рудосортировки, отсадки, разделения в тяжелых суспензиях и флотации. Ручную и автоматическую сортировку применяют для обогащения богатых руд с целью получения флюоритовых концентратов металлургических сортов. Рудосортировку применяют для обогащения только крупнокускового материала (с размером кусков не менее 20—25 мм). Метод обогащения отсадкой не нашел широкого применения ввиду ограниченности запасов мономинеральных круп-новкрапленных руд. Как правило, данный метод применяют для предварительной концентрации карбонатсодержащих флюоритовых руд перед их флотацией с целью удаления значительной части породы. Обогащение в тяжелых суспензиях используется в основном для предварительной концентрации флюоритовых руд и широко применяется за рубежом. На ряде установок в США получают концентраты металлургических сортов, содержащие 85—91 % флюорита при извлечении 81—93 %. Кроме того, существуют установки, которые работают по технологическим схемам, сочетающим обогащение в тяжелых суспензиях с флотацией. Флотация является наиболее совершенным и распространенным методом обогащения карбонатсодержащих флюоритовых руд. Только этот метод позволяет получать богатые концентраты, содержащие более 95 % флюорита, при высоком извлечении из тонковкрапленных комплексных руд, а также выделять другие ценные компоненты. Другие методы применяются обычно с целью предконцентрации материала, поступающего на флотационное разделение. Флюорит довольно легко флотируется оксигидрильными собирателями: олеиновой кислотой, олсатом натрия, аэрозолями ОТ и МА (диалкилсульфосукцинатом натрия), алкил-сульфатом. Максимальная сорбция собирателя и флотируе-мость минерала наблюдаются при рН 6. Жидкое стекло снижает адсорбцию анионного собирателя. Лимонная кислота депрессирует флотацию флюорита. Соли алюминия, особенно в смеси с жидким стеклом, и органические реагенты (декстрин, лигнин-сульфонаты и др.), депрессирующие барит и кальцит, даже несколько активируют флотацию флюорита. Применение в качестве собирателя алкиламино-карбоновых кислот повышает эффективность разделения флюорита и кальцита. По результатам лабораторных исследований флюорит и кварц разделяются с применением катионного собирателя, причем при рН 1—3 флотируется флюорит, а при рН \ \—14 — кварц. На флотацию поступают или исходная руда, или хвосты гравитационного обогащения (с целью выделения крупно-вкрапленных флюорита и барита), или хвосты сульфидной флотации. 3. Флюорит (CaF2) как минерал и источник фтора находит широкое промышленное применение. Флюоритовые концентраты используются в химической промышленности (для производства плавиковой кислоты и фтористых солей), в производстве эмалей и специальных сортов стекла, а также в качестве металлургического флюса. Специфической областью применения минерала является оптика, в которой крупные бесцветные кристаллы оптического флюорита используются для изготовления линз, призм и других деталей, обладающих практически одинаковым показателем преломления в разных длинах волн. Промышленные месторождения флюорита известны в карбонатитах, пегматитах, а также в гидротермальных, скарновых и других образованиях. Однако практическое значение имеют только пегматитовые (около 25 % запасов) и гидротермальные (более 70 % запасов) месторождения. Основные запасы флюорита в России представлены силикатно-флюоритовыми и сульфидными рудами с содержанием 20—45 % CaF2. Флюорит извлекается также из карбонатно-флюоритовых и барит-флюоритовых руд. Как правило, разрабатывают месторождения, руды которых содержат не менее 30 % флюорита. Однако в настоящее время в переработку вовлекаются и более бедные руды (содержащие более 14% флюорита). Обогащение флюоритовых руд осуществляется методами рудосортировки, отсадки, разделения в тяжелых суспензиях и флотации. Ручную и автоматическую сортировку применяют для обогащения богатых руд с целью получения флюоритовых концентратов металлургических сортов. Рудо сортировку применяют для обогащения только крупнокускового материала (с размером кусков не менее 20—25 мм). Метод обогащения отсадкой не нашел широкого применения ввиду ограниченности запасов мономинеральных крупно вкрапленных руд. Как правило, данный метод применяют для предварительной концентрации карбонат содержащих флюоритовых руд перед их флотацией с целью удаления значительной части породы. Обогащение в тяжелых суспензиях используется в основном для предварительной концентрации флюоритовых руд и широко применяется за рубежом. На ряде установок в США получают концентраты металлургических сортов, содержащие 85—91 % флюорита при извлечении 81—93 %. Кроме того, существуют установки, которые работают по технологическим схемам, сочетающим обогащение в тяжелых суспензиях с флотацией. Флотация является наиболее совершенным и распространенным методом обогащения карбонат содержащих флюоритовых руд. Только этот метод позволяет получать богатые концентраты, содержащие более 95 % флюорита, при высоком извлечении из тонковкрапленных комплексных руд, а также выделять другие ценные компоненты. Другие методы применяются обычно с целью предконцентрации материала, поступающего на флотационное разделение. Флюорит довольно легко флотируется оксигидрильными собирателями: олеиновой кислотой, олиеатом натрия, аэрозолями ОТ и МА (диалкилсульфосукцинатом натрия), алкил-сульфатом. Максимальная сорбция собирателя и флотируемость минерала наблюдаются при рН 6. Жидкое стекло снижает адсорбцию анионного собирателя. Лимонная кислота депрессирует флотацию флюорита. Соли алюминия, особенно в смеси с жидким стеклом, и органические реагенты (декстрин, лигнин-сульфонаты и др.), депрессирующие барит и кальцит, даже несколько активируют флотацию флюорита. Применение в качестве собирателя алкиламино-карбоновых кислот повышает эффективность разделения флюорита и кальцита. По результатам лабораторных исследований флюорит и кварц разделяются с применением катионного собирателя, причем при рН 1—3 флотируется флюорит, а при рН \ \—14 — кварц.На флотацию поступают или исходная руда, или хвосты гравитационного обогащения (с целью выделения крупно-вкрапленных флюорита и барита), или хвосты сульфидной флотации. Анализ практики обогащения флюоритовых руд свидетельствует о том, что наиболее широкое распространение получили гравитационно-флотационные (комбинированные) и флотационные технологические схемы. Выбор типа технологической схемы определяется характером и размером вкрапленности минералов, их содержанием в руде и флотируемо-стью, наличием и характером шламов, требованиями к качеству концентратов, а также необходимостью комплексного использования сырья при минимальных затратах на обогащение. Применение гравитационно-флотационной технологии наиболее эффективно при обогащении крупно вкрапленных флюоритовых руд. Комбинированные схемы предусматривают получение крупнокусковых флюоритовых концентратов металлургических сортов или выведение значительной части породообразующих минералов из процесса переработки флюоритовых руд на ранних стадиях обогащения гравитационными методами, в качестве которых на обогатительных фабриках применяют отсадку и обогащение в тяжелых суспензиях. Последующую доводку черновых флюоритовых концентратов, а также обогащение руд в тех случаях, когда Download 2.23 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling