Курсовая работа студентка факультета "естественных наук" "4-курс", "196-группы" Рахматова
ГЛАВА 2. ОСНОВНАЯ ЧАСТЬ. ГЕНЕТИЧЕСКОЕ РАЗНООБРАЗИЕ
Download 227.45 Kb.
|
«Генетическое разнообразие» Рахматова Гули
- Bu sahifa navigatsiya:
- Рисунок 2.1.1. Пример анализа генетического разнообразия
- Cредняя гетерозиготность
- Число аллелей на локус.
- Генетическое расстояние.
ГЛАВА 2. ОСНОВНАЯ ЧАСТЬ.ГЕНЕТИЧЕСКОЕ РАЗНООБРАЗИЕ.Генетическое разнообразие, или генетический полиморфизм, — разнообразие популяций по признакам или маркерам генетической природы. Один из видов биоразнообразия. Рисунок 2.1.1. Пример анализа генетического разнообразия —кластеризации различных популяций человека в Азии по SNP-маркерам. Генетическое разнообразие представляет собой важный компонент генетической характеристики популяции, группы популяций или вида. Генетическое разнообразие, в зависимости от выбора рассматриваемых генетических маркеров, характеризуется несколькими измеряемыми показателями, или параметрами: ~ средняя гетерозиготность, ~ число аллелей на локус, ~ генетическое расстояние (для оценки межпопуляционного генетического разнообразия). Показатели генетического разнообразия Cредняя гетерозиготностьЭтот параметр генетического разнообразия описывает, какую долю в популяции составляют особи, гетерозиготные по изучаемым маркерам, с усреднением этого параметра по набору использованных маркеров. Число аллелей на локус.Этот параметр, как правило, используется для оценки генетического разнообразия по маркерам, имеющим более двух описанных аллельных состояний, например, для микросателлитных локусов. Генетическое расстояние.Параметр описывает степень различия и разнообразия между популяциями по наличию/отсутствию или частотам аллелей используемых маркеров. Методы анализа генетического разнообразия. Для анализа генетического разнообразия могут применяться следующие типы маркеров и соответствующие аналитические методы: ~ Морфологические признаки (фены; применимы для генетически малоизученных организмов). ~ Биохимические маркеры (полиморфизм белков, определяемый с помощью электрофореза). ~ Иммуногенетические. ~ Молекулярные (ДНК-маркеры). ~ На основе ДНК-зондов: ~ полиморфизм длин рестрикционных фрагментов, или ПДРФ (RFLP), ~ минисателлиты, или ДНК-фингерпринт (VNTR[en]; с длиной повтора 15— 100 пар оснований), ~ эндогенные вирусоподобные элементы[en] (EVE-гены). На основе полимеразной цепной реакции (ПЦР): ~ полиморфизм длин амплифицированных фрагментов (в сайтах рестрикции), или ПДАФ (AFLP[en]), ~ случайно амплифицируемая полиморфная ДНК (RAPD[en])[9][10], ~ микросателлиты (SSR, или STR; с длиной повтора 1—5 пар оснований)[11][12], ~ однонуклеотидный полиморфизм (SNP)[4][5]. Естественное богатство нашей планеты связано с разнообразием генетических вариаций. Генетическое разнообразие, т.е. поддержание генотипических гетерозиготности, полиморфизма и другой генотипической изменчивости, которая вызвана адаптационной необходимостью в природных популяциях, представлено наследуемым разнообразием внутри и между популяциями организмов. Как известно, генетическое разнообразие определяется варьированием последовательностей 4 комплиментарных нуклеотидов в нуклеиновых кислотах, составляющих генетический код. Каждый вид несет в себе огромное количество генетической информации: ДНК бактерии содержит около 1 000 генов, грибы - до 10 000, высшие растения - до 400 000. Огромно количество генов у многих цветковых растений и высших таксонов животных. Например, ДНК человека содержит более 30 тыс. генов. Новые генетические вариации возникают у особей через генные и хромосомные мутации, а также у организмов, которым свойственно половое размножение, через рекомбинацию генов. Генетические вариации могут быть оценены у любых организмов, от растений до человека, как число возможных комбинаций различных форм от каждой генной последовательности. Другие разновидности генетического разнообразия, например количество ДНК на клетку, структура и число хромосом, могут быть определены на всех уровнях организации живого. Огромное множество генетических вариаций представлено у скрещивающихся популяций и может быть осуществлено посредством селекции. Различная жизнеспособность отражается в изменениях частот генов в генофонде и является реальным отражением эволюции. Значение генетических вариаций очевидно: они дают возможность осуществления и эволюционных изменений и, если это необходимо, искусственного отбора. Только небольшая часть (около 1%) генетического материала высших организмов изучена в достаточной мере, когда мы можем знать, какие гены отвечают за определенные проявления фенотипа организмов. Для большей части ДНК ее значение для вариации жизненных форм остается неизвестным. Каждый из 109 различных генов, распределенных в мировой биоте, не дает идентичного вклада в формирование разнообразия. В частности, гены, контролирующие фундаментальные биохимические процессы, являются строго консервативными у различных таксонов и, в основном, демонстрируют слабую вариабельность, которая сильно связана с жизнеспособностью организмов. Изучение закономерностей распределения генотипов в популяциях было начато Пирсоном (1904). Он показал, что при наличии разных аллелей одного гена и действия свободного скрещивания в популяциях возникает совершенно определенное распределение генотипов, которое можно представить в виде: где p - концентрация гена A; q - концентрация гена a. Х. Харди (1908) и В. Вайнберг (1908), специально исследовав это распределение, высказали мнение, что оно является равновесным, так как при отсутствии факторов, нарушающих его, оно может сохраняться в популяциях неограниченное время. Так стала развиваться популяционная генетика. Главная заслуга в разработке популяционной генетики, а особенно ее теоретического и математического аспектов, в этот ранний период (1920-1940 гг.) принадлежит С. С. Четверикову, С. Райту, Р. Фишеру, Дж. Холдейну, А. С. Серебровскому и Н. П. Дубинину. Биологическая эволюция - это процесс накопления изменений в организмах и увеличение их разнообразия во времени. Эволюционные изменения затрагивают все стороны существования живых организмов: их морфологию, физиологию, поведение и экологию. В основе всех этих изменений лежат генетические изменения, т.е. изменения наследственного вещества, которое, взаимодействуя со средой, определяет все признаки организмов. На генетическом уровне эволюция представляет собой накопление изменений в генетической структуре популяций. Закон Харди - Вайнберга сформулировали в 1908 году независимо друг от друга математик Г. Х. Харди в Англии и врач В. Вайнберг в Германии. Чтобы понять смысл этого закона, можно привести следующий простой пример. Предположим, что данный локус содержит один из двух аллелей, A и a, представленных с одинаковыми для самцов и самок частотами: p для A и q для a. Представим себе, что самцы и самки скрещиваются случайным образом, или, что то же самое, гаметы самцов и самок образуют зиготы, встречаясь случайно. Тогда частота любого генотипа будет равна произведению частот соответствующих аллелей. Вероятность того, что некоторая определенная особь обладает генотипом AA, равна вероятности (p) получить аллель A от матери, умноженной на вероятность (p) получить аллель A от отца, т. е. . Закон Харди - Вайнберга гласит, что процесс наследования преемственности сам по себе не ведет к изменению частот аллелей и (при случайном скрещивании) частот генотипов по определенному локусу. Более того, при случайном скрещивании равновесные частоты генотипов по данному локусу достигаются за одно поколение, если исходные частоты аллелей одинаковы у обоих полов. Для человека и других многоклеточных показано, что мутации обычно возникают с частотой от 1 на 100 000 до 1 на 1 000 000 гамет. Новые мутанты, хотя и довольно редко, но постоянно появляются в природе, поскольку существует множество особей каждого вида и множество локусов в генотипе любого организма. Например, число особей того или иного вида насекомых обычно составляет около 100 млн. (108). Если предположить, что средняя мутабельность по одному локусу равна 1 мутации на 100 000 (10-5) гамет, то среднее число вновь возникающих в каждом поколении мутантов по этому локусу для данного вида насекомых составит (Частота возникновения мутаций умножается на число особей и еще на два, так как любая особь представляет собой продукт слияния двух гамет.). В генотипе человека имеется около 100 000 (105) локусов. Предположим, что у человека темп мутирования такой же, как у дрозофилы; в этом случае вероятность того, что генотип каждого человека содержит новый аллель, отсутствовавший в генотипе его родителей, равна . Иными словами, каждый человек в среднем несет около двух новых мутаций. Важный шаг в генетике популяций был сделан в 1926 году С. С. Четвериковым. Исходя из закона Харди - Вайнберга, С. С. Четвериков доказал неизбежность генетической разнородности природных популяций при том, что новые мутации непрерывно появляются, но остаются обычно скрытыми (рецессивными), а в популяции идет свободное скрещивание. С. С. Четверикову популяционная генетика обязана еще одним открытием, которое было изложено в маленькой, всего на 4 страницы, заметке «Волны жизни», опубликованной в 1905 году на страницах «Дневника Зоологического отделения Императорского общества любителей естествознания и этнографии» в Петербурге. Он обратил внимание, что поскольку любая природная популяция имеет конечную, ограниченную численность особей, это неизбежно приведет к чисто случайным статистическим процессам в распространении мутаций. Постоянное давление мутаций и миграции генов, а также выщепление биологически менее приспособленных генотипов по сбалансированным полиморфных локусам создает проблему так называемого генетического груза. Понятие генетического груза ввел Г. Меллер в 1950 году в работе «Наш груз мутаций». По его расчетам, от 10 до 50% гамет у человека содержат хотя бы одну вновь возникшую мутацию. Слабо вредящие мутации, если только они проявляются в гетерозиготе, способны нанести популяции больший урон, чем полностью рецессивные летальные мутации. Каждый из нас является носителем по крайней мере восьми вредных мутаций, скрытых в гетерозиготном состоянии. Г. Меллер в соавторстве с Н. Мортоном и Дж. Кроу (1956) произвели оценку генетического груза мутаций путем сравнения детской смертности в случайных выборках из популяций и в семьях, где имели место браки между родственниками. Они выделили собственно мутационный груз, возникающий в результате мутационного давления, и сегрегационный груз как следствие расщепления. Ими предложены расчеты летального эквивалента, соответствующего числу мутаций, дающих вместе летальный исход. Так, один летальный эквивалент может соответствовать одной летальной мутации, двум полулетальным и т. д. Было показано, что средняя величина генетического груза у человека равна 3-5 летальным эквивалентам. Важнейшая особенность подразделенности, также исследованная теоретически, - способность подразделенных популяций поддерживать значительно большее генетическое разнообразие в сравнении с панмиктическими популяциями сопоставимого размера. Считается, что именно такое разнообразие и позволяет подразделенной популяции более эффективно реагировать на изменения среды и вслед за ними изменять свою генотипическую структуру - тезис, играющий решающую роль в эволюционной концепции С. Райта, известной под названием «теория смещающегося равновесия», в которой «поверхность» изображается топографической картой с вершинами и долинами на едином ландшафте генных комбинаций. В этой модели важнейшее заключение состоит в том, что «эволюционный процесс зависит от постоянно смещающегося баланса между факторами стабильности и изменений и что наиболее благоприятное условие для этого - наличие тонко подразделенной структуры, в которой изоляция и перекрестная коммуникация поддерживаются в соответствующем равновесии». Download 227.45 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling