Laboratoriya ishi 5 Mavzu: Matematik formulalar bilan ishlash Ishdan maqsad
Download 0.61 Mb.
|
5. Lab. Latex
- Bu sahifa navigatsiya:
- Nazariy qism
- Topshiriqlar
921-19 guruh talabasi Qalandarova Mumtozbegimning Latexga kirish fanidan Laboratoriya ishi - 5 Mavzu: Matematik formulalar bilan ishlash Ishdan maqsad: Dasturda matematik formulalarni yozishni o’rganish Nazariy qism: Matematikada ko’p hollarda grek harflaridan foydalaniladi.Shu sababli biz ham LATEXda matematik formula kiritishni grek harflarini kiritishdan boshlaymiz. LATEXda grek harflarini kiritish buyrug’i “\” belgisi va shu belgining inglizcha nomini yozish orqali kiritiladi(Masalan: harfi \alpha kabi kiritiladi).Shu o’rinda yana bir ma’lumotni aytib o’tish kerak.Grek harflari ro’yhatidan (“omikron” deb o’qiladi) harfini bu usul bilan kiritib bo’lmaydi(Ya’ni \omikron deb yozish no’to’g’ri hisoblanadi).Bu harfni kiritish uchun kursivda yozilgan lotincha “o” harfi,yoki odatdagidek o harfini kiritish kifoya.Misol tariqasida bir necha grek harflarining LATEXda yozilishini jadvalini keltiramiz. Topshiriqlar: belgilar vazifasini tushuntiring Topshiriq natijasi: \documentclass[12pt,a4paper]{article} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[english]{babel} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{makeidx} \usepackage{graphicx} \usepackage{xcolor} \author{Qalandarova Mumtozbegim} \title{Matematika} \begin{document}\huge \maketitle \begin{center} \textbf{Matematik simvollar} \end{center} \pagecolor{green} \begin{math} \alpha\ \beta\ \gamma\ \omega\ \delta\ \pi\ \xi\ \psi\ +\ \odot\ \ominus\ \cdot\ \frac{3}{8}\\\\ \sqrt{x^3}=x\\\\ \textbf{Matematik oddiy formulalar}\\\\ \frac{a^2+a-3} {1-3a^{-1}}\cdot\left [\frac{(a+2)^2-a^2} {4a^2-4}-\frac{3}{a^2-a}\right] \,. \end{math}\\\\ \huge\bf1.\;\( 1+\left(\frac{1}{1-x^{2}}\right)^3 \) \\\\ \bf2.\;$D=\sqrt{b^{2}-4ac}$\\\\ \bf3.\;$\pi\approx 3{,}14$\\\\ \bf4.\;$\int\limits_0^1 x^2 dx=1/3$\\\\ \bf5.\;{\color{blue}\(A=\pi{r^2}\)}\\\\ \textbf{Matematik Murakkab formulalar}\\\\ \bf6.\;$\prod\nolimits_{i=1}^ni=n!$ \\\\ \bf7.\;\( \frac{25}{36}=(\frac{1}{1+\frac{1}{5}})^2 \)\\\\ \bf8.\;\((x+a)^n=\sum_{k=0}^n\)\\\\ \end{document} Download 0.61 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling