Aniqlikni baholash. Tenglashtirilgan elementning o'rtacha kvadratik xatosi quyidagi formula bilan aniqlanadi.
1
ππΉ = πβ ,
ππΉ
bu yerda
π =
β ππ― 2
β
β
π
tarmoqni tenglashtirishdan aniqlangan vazn
birligining o'rtacha kvadratik xatosi; π― β π vazn bilano`lchangan qiymatlarga tuzatmalar; π β shartli tenglamalar soniga teng bo'lgan ortiqcha o'lchovlar soni.
π1
|
π2
|
π3
|
π4
|
ππΌ
|
ππ
|
π
|
π
|
πππ§ππππ‘
|
6,000
|
β2,000
|
β2,000
|
0,887
|
+1,000
|
+0,933
|
+1,03
|
+5,850
|
|
β1
|
0,3333
|
0,3333
|
β0,1478
|
β0,1667
|
β0,1555
|
β0,1717
|
β0,9750
|
β0,9751
|
|
6,000
|
β2,000
|
0,292
|
β1,000
|
β0,006
|
β1,21
|
+0,076
|
|
5,3333
|
β2,6667
|
0,5876
|
β0,6667
|
+0,3050
|
β0,8667
|
+2,0258
|
+2,0258
|
β1
|
+5,0000
|
β0,1102
|
+0,1250
|
β0,0572
|
+0,1625
|
β0,3798
|
β0,3799
|
|
|
6,000
|
β1,203
|
+3,000
|
β0,344
|
+0,60
|
+4,053
|
|
+4,0000
|
β0,6136
|
+3,0000
|
+0,1195
|
+0,5099
|
+7,0157
|
+7,0158
|
β1
|
0,1534
|
β0,7500
|
β0,0299
|
β0,1275
|
β1,7539
|
β1,7540
|
|
|
|
57,398
|
β5,506
|
+11,776
|
+2,05
|
+65,694
|
|
57,1080
|
β5,1201
|
+11,6228
|
+2,0715
|
+65,682
|
+65,6822
|
β1
|
+0,0897
|
β0,2035
|
β0,0363
|
β1,1501
|
β1,1501
|
β0,1717
|
+0,1625
|
β0,1275
|
β0,0363
|
4,000
|
β0,921
|
|
+0,573
|
|
π4
1
π =
πΌ
|
+0,0054
|
+0,0040
|
β0,0056
|
|
|
|
|
|
β0,0444
|
β0,0666
|
β0,1331
|
1,0409
|
β0,0859
|
β0,4767
|
+0,4783
|
+0,4783
|
+0,0333
|
+0,0999
|
|
|
|
|
|
|
β0,1774
|
|
π3
|
1
π =
π
|
3,415
0,8837
|
β0,5474
|
14,853
0,2514
|
0,2504
|
π2
|
π1
|
Uchburchak raqami
|
Punktlar raqami
|
Yo`nalishlar farqi
|
O`lchangan burchaklar
|
Tuzatmalar
|
Tenglangan burchaklar
|
Tenglangan burchaklar
sinuslari
|
Tenglangan tomonlar, m
|
|
|
|
|
|
|
π =15200,944
|
|
1
|
2β1
|
37Β° 11'06,71"
|
β0,07β²β²
|
6,64β²β²
|
0,6043930
|
9187,34
|
1
|
2
3
|
6β5
11β10
|
33 06 57,19
109 41 57,13
|
β0,64β²β²
β0,32β²β²
|
56,55β²β²
56,81β²β²
|
0,5463316
0,9414758
|
8304,76
14311,32
|
|
|
β
|
180 00 01,03
|
β1,03
|
00,00
|
|
|
|
π1
|
1,03
|
|
|
|
|
|
|
|
|
π =21345,667
|
|
4
|
5β4
|
25 12 57,42
|
+0,59β²β²
|
58,01β²β²
|
0,4260337
|
9093,97
|
2
|
5
6
|
9β8
12β11
|
25 29 36,31
129 17 25,06
|
+0,11β²β²
+0,51β²β²
|
36,42β²β²
25,57β²β²
|
0,4304079
0,7739459
|
9187,34
16520,39
|
|
|
β
|
179 59 58,79
|
+1,21
|
00,00
|
|
|
|
π2
|
β1,21
|
|
|
|
|
|
|
|
|
q=17675,06
|
|
7
|
3β2
|
30 57 52,92
|
β0,25β²β²
|
52,67β²β²
|
0,5145088
|
9093,97
|
3
|
8
9
|
10β12
8β7
|
121 00 37,41
28 01 30,27
|
β0,19β²β²
β0,15β²β²
|
37,22β²β²
30,12β²β²
|
0,8570743
0,4698572
|
15148,84
8304,76
|
|
|
β
|
180 00 00,60
|
β0,59
|
00,01
|
|
|
|
π3
|
0,60
|
|
|
Vazn birligining o'rtacha kvadratik xatosi π = β0,455 = 0,34β²β². Tenglangan
4
burchaklarning o'rtacha kvadratik xatosi π = πβ2 = 0,34β2 = 0,48β²β². Direktsion
burchagining hisoblangan teskari vazni qiymatini hisobga olgan holda πΌ34
( 1 =
πππΌ
1,0409) va tomon uzunligi uchun π34
( 1
πππ
= 0,8837) dan topamiz ππΌ34 =
πβ 1
πππΌ
= 0,34β1,0409 = 0,35β²β²; ππ34
= πβ 1
πππ
= 0,34β0,8837 = 0,32ππ =
0,032π,
Yakuniy hisob-kitoblar 12.8 -jadvalda keltirilgan.
Agar burchaklari tenglangan ba'zi uchburchaklardagi bog`lanmaslik 0,01β²β² dan oshmasa va uchburchaklar yechimidan hisoblangan tomonlar uzunliklarining farqi oxirgi belgining ikki birligidan ko'p bo'lmasa, unda tenglashtirish sifatli amalga oshirilgan hisoblanadi.
Aks holda, tomonlarning uzunligini hisoblashni tekshirish kerak, agar bu yerda ham xatolar bo'lmasa, ularni qutb shartidan izlash va uchburchaklardagi bog'lanmaslik 0,01β²β² dan ortgan holda shakllar shartidan izlash kerak. Shundan so'ng, nuqtalarning yakuniy koordinatalari, tomonlarning uzunligi va direktsion burchaklari hamda nuqta koordinatalari katalogi hisoblanadi (12.9-jadval).
12.9-jadval
Punkt
raqami
|
Tenglangan
burchaklar
|
Direktsion
burchaklar
|
S, m
|
X, m
|
Y, m
|
2
1
3
4
2
1
|
68Β°08'59,31"
28 01 30,12
230 42 34,03
33 06 56,55
|
187Β°28'37,81"
75 37 37,12
283 39 07,24
334 21 41,27
187 28 37,82
|
15148,84
9093,97
9187,34
|
5963124,81
5966885,26
5969031,66
5977314,44
|
8412617,83
8427292,51
8418455,47
8414480,1
|
Do'stlaringiz bilan baham: |