Лекция №2 2-модуль. Основные радиоматериалов


Download 135.16 Kb.
bet4/5
Sana10.03.2023
Hajmi135.16 Kb.
#1258188
TuriЛекция
1   2   3   4   5
Bog'liq
RM va RK лекция 2

элементарная частица

заряд (условные единицы)

заряд (Кл)

масса (а.е.м.)

масса (г)

протон

+1

1,6·10×10-19

1

1,7·10×10-24

нейтрон

0

0

1

1,7·10×10-24

электрон

-1

-1,6·10×10-19

0

9,1·10×10-28

Поскольку в ядре атома сосредоточена практически вся масса, но его размеры ничтожно малы по сравнению с общим объемом атома, то ядро условно принимается материальной точкой покоящейся в центре атома, а сам атом рассматривается как система электронов. При химической реакции ядро атома не затрагивается (кроме ядерных реакций), как и внутренние электронные уровни, а участвуют только электроны внешней электронной оболочки. По этой причине необходимо знать свойства электрона и правила формирования электронных оболочек атомов.
Перед изучением свойств электрона и правил формирования электронных уровней, необходимо затронуть историю формирования представлений о строении атома. Мы не будем рассматривать полную историю становления атомарного строения, а остановимся лишь на самых актуальных и наиболее "верных" представлениях, способных наиболее наглядно показать как располагаются электроны в атоме. Первыми наличие атомов как элементарных составляющих вещества, предположили еще древнегреческие философы. После чего история строения атома прошла сложный путь и разные представления, такие как неделимость атома, Томсоновская модель атома и другие. Наиболее близкой оказалась модель атома, предложенная Эрнестом Резерфордом в 1911 году. Он сравнил атом с солнечной системой, где в роли солнца выступало ядро атома, а электроны двигались вокруг него подобно планетам. Размещение электронов на стационарных орбитах было очень важным шагом в понимании строения атома. Однако такая планетарная модель строения атома шла в противоречие с классической механикой. Дело в том, что при движении электрона по орбите он должен был терять потенциальную энергию и в конце концов "упасть" на ядро и атом должен был прекратить свое существование. Такой парадокс был устранен введением постулатов Нильсом Бором. Согласно этим постулатам электрон двигался по стационарным орбитам вокруг ядра и при нормальных условиях не поглощал и не испускал энергию. Постулаты показывают, что для описания атома законы классической механики не подходят. Такая модель атома называется моделью Бора-Резерфорда. Продолжением планетарного строения атома является квантово-механическая модель атома, согласно которой мы и будем рассматривать электрон.
Электрон является квазичастицей проявляя корпускулярно-волновой дуализм. Он одновременно является и частицей (корпускула) и волной. К свойствам частицы можно отнести массу электрона и его заряд, а к волновым свойствам - способность к дифракции и интерференции. Связь между волновыми и корпускулярными свойствами электрона отражены в уравнении де Бройля:

где  - длина волны,  — масса частицы,  — скорость частицы,  — постоянная Планка = 6,63·10-34 Дж·с.
Для электрона невозможно рассчитать траекторию его движения, можно говорить только о вероятности нахождения электрона в том или ином месте вокруг ядра. По этой причине говорят не об орбитах движения электрона вокруг ядра, а об орбиталях - пространстве вокруг ядра, в котором вероятность нахождения электрона превышает 95%. Для электрона невозможно одновременно точно измерить координату и скорость (принцип неопределенности Гейзенберга).

где  - неопределенность координаты электрона,  -погрешность измерения скорости, ħ=h/2π=1.05·10-34 Дж·с
Чем точнее мы измеряем координату электрона, тем больше погрешность в измерении его скорости, и на оборот: чем точнее мы знаем скорость электрона, тем больше неопределенность в его координате.
Наличие волновых свойств у электрона позволяет применить к нему волновое уравнение Шредингера.

где  — полная энергия электрона,  потенциальная энергия электрона, физический смысл функции  - квадратный корень от вероятности нахождения электрона в пространстве с координатами xy и z (ядро считается началом координат).
Представленное уравнение написано для одноэлектронной системы. Для систем, содержащих более одного электрона принцип описания остается прежним, но уравнение принимает более сложный вид. Графическим решением уравнения Шредингера является геометрия атомных орбиталей. Так s-орбиталь имеет форму шара, p-орбиталь - форму восьмерки с "узлом" в начале координат (на ядре), где вероятность обнаружения электрона стремится к нулю.
В рамках современной квантово-механической теории электрон описывается набором квантовых чисел: nlmls и ms. Согласно принципу Паули в одном атоме не может быть двух электронов с полностью идентичным набором всех квантовых чисел. Главное квантовое число n определяет энергетический уровень электрона, то есть на каком электронном уровне расположен данный электрон. Главное квантовое число может принимать только целочисленные значения больших 0: n=1;2;3... Максимальное значение n для конкретного атома элемента соответствует номеру периода, в котором расположен элемент в периодической таблице Д.И.Менделеева. Орбитальное (дополнительное) квантовое число l определяет геометрию электронного облака. Может принимать целочисленные значения от 0 до n-1. Для значений дополнительного квантового числа l применяют буквенное обозначение:




Download 135.16 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling