Лекция. Предсказание структур генов эукариотических организмов. Методы прогнозирования генных структур.


Download 447.22 Kb.
bet2/7
Sana16.03.2023
Hajmi447.22 Kb.
#1278888
TuriЛекция
1   2   3   4   5   6   7
Bog'liq
6-7 Лекция. Предсказание структур генов эукариотических организмов. Методы прогнозирования генных структур.

Особенно полезно знать белковые последовательности других видов, так как полипептидные последовательности часто являются более консервативными, чем лежащие в основе нуклеотидные последовательности и могут быть легко выровнены. Последовательности аминокислот полезны при определении наличия генных локусов, но не всегда дают информацию о точной структуре гена.

Информация о транскриптах РНК дает очень точную информацию для правильного предсказания структуры генов, но эти данные гораздо менее полны и часто сильно зашумлены. Кроме того, транскрипты известны не для всех генов. Иногда в них могут присутствовать интроны из-за неполного созревания мРНК.

Ключевым является точное выравнивание внешних данных: транскрипты должны быть выровнены с учётом сплайсинга сплайсингу (экзон-интронной структуры для генов эукариот), а белковые последовательности должны сравниваться с шестью каркасами трансляции нуклеотидных последовательностей. Также необходимо задать пороговые значения и пропускать слишком или менее консервативные гены.

Неэмпирические методы

Неэмпирический подход заключается в использовании структуры генов в качестве шаблона для обнаружения генов, что также называется ab initio-предсказанием. Этот метод более трудоёмкий, поскольку для него необходимо создавать статистические модели. Генные предсказания ab initio основаны на двух типах информации о последовательности: датчики сигналов и датчики контента (под датчиком здесь понимается некий набор признаков).

Датчики сигнала относятся к мотивам коротких последовательностей, таким как места сплайсинга, точки разветвления, полипиримидиновые тракты, стартовые и стоп-кодоны. Обнаружение экзона должно опираться на датчики контента, учитывающие модели использования кодонов. Генные искатели ab initio не используют сходство последовательностей и вместо этого полагаются на собственные генные измерения, включая датчики сигнала и содержимого.

Первостепенное значение в нем имеет обучающий набор структурно хорошо аннотированных генов, используемых для построения моделей и обучения программного обеспечения. Поскольку каждый геном уникален, эти модели и программное обеспечение должны быть специфичными для каждого генома и, следовательно, должны быть перестроены и переобучены для каждого нового вида.


Download 447.22 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling